Implementasi Bidirectional Encoder Representations from Transformers (BERT) untuk Analisis Sentimen Ulasan Aplikasi Ibis Paint X
DOI:
https://doi.org/10.51454/decode.v5i3.1413Keywords:
Analisis Sentimen, BERT, Ibis Paint X, Pelabelan, TransformersAbstract
Perkembangan aplikasi seni digital memunculkan banyak ulasan pengguna yang bermanfaat bagi pengembang, namun sulit dievaluasi secara manual. Penelitian ini menganalisis sentimen 8.500 ulasan berbahasa Indonesia pada aplikasi Ibis Paint X yang diperoleh melalui proses scraping Google Play Store menggunakan google-play-scraper. Dataset terdiri atas dua kolom utama, yaitu review_text dan category (rating), kemudian melalui tahap preprocessing mencakup pelabelan, pembersihan teks, penghapusan stopwords, tokenisasi, serta normalisasi. Setelah dibagi menjadi data latih (70%), validasi (15%), dan uji (15%), model IndoBERT di-fine-tuning selama lima epoch untuk melakukan klasifikasi sentimen positif, negatif, dan netral. Evaluasi performa model dilakukan menggunakan akurasi, precision, recall, F1-score, serta confusion matrix. Hasil pengujian menunjukkan akurasi sebesar 87%. Kinerja model paling tinggi pada kelas sentimen negatif dengan precision 0,94, recall 0,96, dan F1-score 0,95. Namun, performa pada kelas positif (F1-score 0,52) dan netral (F1-score 0,31) masih rendah, sebagaimana turut tercermin pada confusion matrix yang menunjukkan banyaknya kesalahan klasifikasi menuju kelas positif yang dominan. Temuan ini menegaskan efektivitas BERT dalam analisis sentimen berbahasa Indonesia, sekaligus menunjukkan perlunya penanganan ketidakseimbangan data untuk meningkatkan performa pada seluruh kategori sentimen.
References
Alaparthi, S., & Mishra, M. (2020). Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey. 1, 1-20. https://doi.org/10.48550/arXiv.2007.01127
Albab, M. U., P., Y. K., & Fawaiq, M. N. (2023). Optimization of the Stemming Technique on Text Preprocessing President 3 Periods Topic. Jurnal Transformatika, 20(2), 1–12. https://doi.org/10.26623/transformatika.v20i2.5374
Aliero, A. A., Adebayo, B. S., Aliyu, H. O., Tafida, A. G., Kangiwa, B. U., & Dankolo, N. M. (2023). Systematic Review on Text Normalization Techniques and its Approach to Non-Standard Words. International Journal of Computer Applications, 185(33), 44–55. https://doi.org/10.5120/ijca2023923106
Areshey, A., & Mathkour, H. (2023). Transfer Learning For Sentiment Classification Using Bidirectional Encoder Representations From Transformers (BERT) Model. Sensors, 23(11). https://doi.org/10.3390/s23115232
Cahyawijaya, S., Winata, G. I., Wilie, B., Vincentio, K., Li, X., Kuncoro, A., Ruder, S., Lim, Z. Y., Bahar, S., Khodra, M. L., Purwarianti, A., & Fung, P. (2021). IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation. EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, 8875–8898. https://doi.org/10.18653/v1/2021.emnlp-main.699
Diaz, G. (2025). Stopwords-id. https://github.com/stopwords-iso/stopwords-id
Hadiprakoso, R. B., Setiawan, H., Yasa, R. N., & Girinoto. (2023). Text Preprocessing for Optimal Accuracy in Indonesian Sentiment Analysis Using a Deep Learning Model with Word Embedding. AIP Conference Proceedings, 2680(1). https://doi.org/10.1063/5.0126116
Hasanudin, C., Mayasari, N., Saddhono, K., & Prabowo, R. A. (2021). IbisPaint X Apps in Creating Collaborative 3D Learning media of Pop-Up and Movable Books. Journal of Physics: Conference Series, 1764(1). https://doi.org/10.1088/1742-6596/1764/1/012131
Jupin-Delevaux, É., Djahnine, A., Talbot, F., Richard, A., Gouttard, S., Mansuy, A., Douek, P., Si-Mohamed, S., & Boussel, L. (2023). BERT-Based Natural Language Processing Analysis Of French CT Reports: Application To The Measurement Of The Positivity Rate For Pulmonary Embolism. Research in Diagnostic and Interventional Imaging, 6, 100027. https://doi.org/10.1016/j.redii.2023.100027
Latif, R. M. A., Abdullah, M. T., Shah, S. U. A., Farhan, M., Ijaz, F., & Karim, A. (2019). Data Scraping From Google Play Store And Visualization Of Its Content For Analytics. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies, ICoMET 2019, July 2020. https://doi.org/10.1109/ICOMET.2019.8673523
Li, H., Xue, T., Zhang, A., Luo, X., Kong, L., & Huang, G. (2024). The Application And Impact Of Artificial Intelligence Technology In Graphic Design: A Critical Interpretive Synthesis. Heliyon, 10(21), e40037. https://doi.org/10.1016/j.heliyon.2024.e40037
Maulana, A., Rozikin, C., & Surharso, A. (2025). Sentiment Analysis Of Indonesia National Team Naturalization Using Bidirectional Encoder Representations From Transformers. Informatika Dan Sains, 15(01), 2025. https://doi.org/10.54209/infosains.v15i01
Mustak, M., Hallikainen, H., Laukkanen, T., Plé, L., Hollebeek, L. D., & Aleem, M. (2024). Using Machine Learning To Develop Customer Insights From User-Generated Content. Journal of Retailing and Consumer Services, 81(July). https://doi.org/10.1016/j.jretconser.2024.104034
Nawawi, I., Ilmawan, K. F., Maarif, M. R., & Syafrudin, M. (2024). Exploring Tourist Experience through Online Reviews Using Aspect-Based Sentiment Analysis with Zero-Shot Learning for Hospitality Service Enhancement. Information (Switzerland), 15(8). https://doi.org/10.3390/info15080499
Oliaee, A. H., Das, S., Liu, J., & Rahman, M. A. (2023). Using Bidirectional Encoder Representations From Transformers (BERT) To Classify Traffic Crash Severity Types. Natural Language Processing Journal, 3, 100007. https://doi.org/10.1016/j.nlp.2023.100007
Pradipta, D., & Widodo, E. (2024). Sentiment Analysis on Social Media using Bidirectional Encoder from Transformers (Case Study : Covid – 19 Omicron). INFORMASI (Jurnal Informatika Dan Sistem Informasi), 16(2), 267–281. https://doi.org/10.37424/informasi.v16i2.319
Rayhan, R., Rayhan, A., & Kinzler, R. (2023). Exploring the Power of Data Manipulation and Analysis: A Comprehensive Study of NumPy, SciPy, and Pandas. ResearchGate, 1-23. https://doi.org/10.13140/RG.2.2.22390.16968
Wang, J., & Zhang, J. (2024). Research on the Theory and Innovation Strategy of Digital Media Art Development Based on Artificial Intelligence Technology. Applied Mathematics and Nonlinear Sciences, 9(1), 1-20. https://doi.org/10.2478/amns-2024-1543
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Esti Setiyaningsih, Ety Sutanty, Maukar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









