Reframing User Acceptance with User-Generated Content: Insights from Digital Banking in Indonesia
DOI:
https://doi.org/10.51454/decode.v5i3.1456Keywords:
Digital Banking, Machine Learning, User Acceptance, User Generated ContentAbstract
This study examines user acceptance of BNI’s newly launched digital banking application, WONDR, by leveraging user-generated content (UGC) obtained from the Google Play Store. A total of 60,434 user reviews were collected and analyzed using a supervised machine learning approach, specifically the Random Forest algorithm, to classify sentiments into positive and negative categories. The dataset underwent a rigorous preprocessing pipeline, including text normalization, tokenization, stopword removal, and stemming, followed by feature extraction using the Term Frequency–Inverse Document Frequency (TF–IDF) method. Model performance was evaluated through a 7-Fold Cross-Validation strategy and standard metrics such as accuracy, precision, recall, and F1-score, achieving strong and consistent results with an overall accuracy of 0.888. The findings indicate that UGC-based sentiment analysis provides a scalable and interpretable method for assessing user acceptance, offering actionable insights for strategic application development. Theoretically, this study extends traditional acceptance models (e.g., TAM and UTAUT) by operationalizing user perceptions through naturally occurring feedback. Practically, the proposed approach supports data-driven decision-making for enhancing digital service quality in the banking sector.
References
Al-Adwan, A. S. (2020). Investigating the drivers and barriers to MOOCs adoption: The perspective of TAM. Education and Information Technologies, 25(6), 5771–5795. https://doi.org/10.1007/s10639-020-10250-z
Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending The Technology Acceptance Model (TAM) To Predict University Students’ Intentions To Use Metaverse-Based Learning Platforms. Education and Information Technologies, 28(11), 15381–15413. https://doi.org/10.1007/s10639-023-11816-3
Alanzi, T. (2021). A Review Of Mobile Applications Available In The App And Google Play Stores Used During The COVID-19 Outbreak. Journal of Multidisciplinary Healthcare, 14, 45–57. https://doi.org/10.2147/JMDH.S285014
Alsaleh, N., Alnanih, R., & Alowidi, N. (2025). Hybrid Deep Learning Approach For Automating App Review Classification: Advancing Usability Metrics Classification With An Aspect-Based Sentiment Analysis Framework. Computers, Materials and Continua, 82(1), 949–976. https://doi.org/10.32604/cmc.2024.059351
Bae, S. Y., Lee, J., Jeong, J., Lim, C., & Choi, J. (2021). Effective Data-Balancing Methods For Class-Imbalanced Genotoxicity Datasets Using Machine Learning Algorithms And Molecular Fingerprints. Computational Toxicology, 20. https://doi.org/10.1016/j.comtox.2021.100178
Bahtiar, S. A. H., Dewa, C. K., & Luthfi, A. (2023). Comparison of Naïve Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews Using Rating-Based Labeling. Journal of Information Systems and Informatics, 5(3), 915–927. https://doi.org/10.51519/journalisi.v5i3.539
Bashiri, H., & Naderi, H. (2024). Comprehensive Review And Comparative Analysis Of Transformer Models In Sentiment Analysis. Knowledge and Information Systems, 66(12), 7305–7361. https://doi.org/10.1007/s10115-024-02214-3
Brooke, J. (1996). SUS—a Quick And Dirty Usability Scale. Usability Evaluation in Industry, 189(194), 4–7. https://hell.meiert.org/core/pdf/sus.pdf
Chamorro-Atalaya, O., Arévalo-Tuesta, J., Balarezo-Mares, D., Gonzáles-Pacheco, A., Mendoza-León, O., Quipuscoa-Silvestre, M., Tomás-Quispe, G., & Suarez-Bazalar, R. (2023). K-Fold Cross-Validation through Identification of the Opinion Classification Algorithm for the Satisfaction of University Students. International Journal of Online and Biomedical Engineering, 19(11), 140–158. https://doi.org/10.3991/ijoe.v19i11.39887
Chawla, S., Kaur, R., & Aggarwal, P. (2023). Text Classification Framework For Short Text Based On TFIDF-FastText. Multimedia Tools and Applications, 82(26), 40167–40180. https://doi.org/10.1007/s11042-023-15211-5
Danyal, M. M., Khan, S. S., Khan, M., Ullah, S., Ghaffar, M. B., & Khan, W. (2024). Sentiment Analysis Of Movie Reviews Based On NB Approaches Using TF–IDF And Count Vectorizer. Social Network Analysis and Mining, 14(1), 87. https://doi.org/10.1007/s13278-024-01250-9
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). Technology Acceptance Model. J Manag Sci, 35(8), 982–1003.
Fei, H., Chua, T.-S., Li, C., Ji, D., Zhang, M., & Ren, Y. (2022). On The Robustness Of Aspect-Based Sentiment Analysis: Rethinking Model, Data, And Training. ACM Transactions on Information Systems, 41(2), 1–32.
Fricker, R. D., & Schonlau, M. (2002). Advantages And Disadvantages Of Internet Research Surveys: Evidence From The Literature. Field Methods, 14(4), 347–367. https://doi.org/10.1177/152582202237725
Gasparetto, A., Marcuzzo, M., Zangari, A., & Albarelli, A. (2022). A Survey On Text Classification Algorithms: From Text To Predictions. Information, 13(2), 83.
Khan, L., Amjad, A., Afaq, K. M., & Chang, H.-T. (2022). Deep Sentiment Analysis Using CNN-LSTM Architecture Of English And Roman Urdu Text Shared In Social Media. Applied Sciences, 12(5), 2694.
Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A Comprehensive Comparative Study Of Artificial Neural Network (ANN) And Support Vector Machines (SVM) On Stock Forecasting. Annals of Data Science, 10(1), 183–208. https://doi.org/10.1007/s40745-021-00344-x
Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction And Evaluation Of A User Experience Questionnaire. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5298 LNCS, 63–76. https://doi.org/10.1007/978-3-540-89350-9_6
Li, C., Li, L., Zheng, J., Wang, J., Yuan, Y., Lv, Z., Wei, Y., Han, Q., Gao, J., & Liu, W. (2022). China’s Public Firms’ Attitudes Towards Environmental Protection Based On Sentiment Analysis And Random Forest Models. Sustainability (Switzerland), 14(9), 5046. https://doi.org/10.3390/su14095046
Li, J., Sun, H., & Li, J. (2023). Beyond Confusion Matrix: Learning From Multiple Annotators With Awareness Of Instance Features. Machine Learning, 112(3), 1053–1075. https://doi.org/10.1007/s10994-022-06211-x
Manyol, M., Eke, S., Massoma, A. J. M., Biboum, A., & Mouangue, R. (2022). Preprocessing Approach for Power Transformer Maintenance Data Mining Based on k-Nearest Neighbor Completion and Principal Component Analysis. International Transactions on Electrical Energy Systems, 2022, 1–10. https://doi.org/10.1155/2022/8546588
Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment Analysis And Classification Of Indian Farmers’ Protest Using Twitter Data. International Journal of Information Management Data Insights, 1(2), 100019. https://doi.org/10.1016/j.jjimei.2021.100019
Newby, R., Watson, J., & Woodliff, D. (2003). SME Survey Methodology: Response Rates, Data Quality, And Cost Effectiveness. Entrepreneurship Theory and Practice, 28(2), 163–172. https://doi.org/10.1046/j.1540-6520.2003.00037.x
Ren, Z., Wang, S., & Zhang, Y. (2023). Weakly Supervised Machine Learning. CAAI Transactions on Intelligence Technology, 8(3), 549–580. https://doi.org/10.1049/cit2.12216
Rouidi, M., Elouadi, A. E., Hamdoune, A., Choujtani, K., & Chati, A. (2022). TAM-UTAUT And The Acceptance Of Remote Healthcare Technologies By Healthcare Professionals: A Systematic Review. Informatics in Medicine Unlocked, 32, 101008. https://doi.org/10.1016/j.imu.2022.101008
Santoso, W., Sitorus, P. M., Batunanggar, S., Krisanti, F. T., Anggadwita, G., & Alamsyah, A. (2021). Talent Mapping: A Strategic Approach Toward Digitalization Initiatives In The Banking And Financial Technology (Fintech) Industry In Indonesia. Journal of Science and Technology Policy Management, 12(3), 399–420. https://doi.org/10.1108/JSTPM-04-2020-0075
Suhaeni, C., Kamila, S. A., Fahira, F., Yusran, M., & Alfa Dito, G. (2025). Exploring a Large Language Model on the ChatGPT Platform for Indonesian Text Preprocessing Tasks. Indonesian Journal of Statistics and Its Applications, 9(1), 100–116. https://doi.org/10.29244/ijsa.v9i1p100-116
Tharwat, A. (2021). Classification Assessment Methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/j.aci.2018.08.003
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance Of Information Technology: Toward A Unified View. MIS Quarterly: Management Information Systems, 27(3), 425–478. https://doi.org/10.2307/30036540
Xin, Y., & Ren, X. (2022). Predicting Depression Among Rural And Urban Disabled Elderly In China Using A Random Forest Classifier. BMC Psychiatry, 22(1), 118. https://doi.org/10.1186/s12888-022-03742-4
Zaghloul, M., Barakat, S., & Rezk, A. (2024). Predicting E-Commerce Customer Satisfaction: Traditional Machine Learning Vs. Deep Learning Approaches. Journal of Retailing and Consumer Services, 79, 103865. https://doi.org/10.1016/j.jretconser.2024.103865
Zin, K. S. L. T., Kim, S., Kim, H. S., & Feyissa, I. F. (2023). A Study On Technology Acceptance Of Digital Healthcare Among Older Korean Adults Using Extended TAM (Extended Technology Acceptance Model). Administrative Sciences, 13(42), 1-18 . https://doi.org/10.3390/admsci13020042
Zogheib, S., & Zogheib, B. (2024). Understanding University Dtudents’ Sdoption Of Chatgpt: Insights From TAM, SDT, And Beyond. Journal of Information Technology Education: Research, 23, 1-14. https://doi.org/10.28945/5377
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Herbert Siregar, Munir, Ade Sobandi, Lala Septem Riza, Samialloi Nusratullo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









