Optimasi Model Support Vector Machine (SVM) Menggunakan GridSearchCV untuk Prediksi Harga Penutupan Saham PT Aneka Tambang Tbk (ANTAM)

Authors

  • Andriansyah Latif Manajemen Universitas Gunadarma
  • Dina Kusuma Astuti Psikologi Universitas Gunadarma
  • Rini Arianty Sistem Informasi Universitas Gunadarma

DOI:

https://doi.org/10.51454/decode.v5i3.1416

Keywords:

Antam, Harga Penutupan, RMSE, Saham, SVM

Abstract

Pasar modal merupakan salah satu instrumen penting dalam perekonomian, di mana fluktuasi harga saham dapat memengaruhi keputusan investasi. PT Aneka Tambang Tbk (ANTAM) merupakan salah satu emiten di Bursa Efek Indonesia dengan tingkat volatilitas harga yang cukup tinggi sehingga diperlukan model prediksi yang akurat. Penelitian ini bertujuan untuk membangun model prediksi harga penutupan saham ANTAM tahun 2024 menggunakan algoritma Support Vector Machine (SVM). Data historis saham diolah melalui tahap pra-pemrosesan, meliputi penanganan missing value dan normalisasi, kemudian dilakukan pelatihan model dengan tiga rasio pembagian data. Evaluasi model dilakukan menggunakan metrik RMSE, MSE, dan R² Score. Hasil penelitian menunjukkan bahwa model SVM mampu memberikan prediksi dengan tingkat akurasi yang sangat tinggi, ditunjukkan oleh nilai RMSE yang rendah (0.024–0.029) dan R² Score mendekati 1 (0.9938–0.9953). Performa terbaik diperoleh pada rasio pembagian data 7:3 dengan MSE terkecil 0.0006 dan R² Score tertinggi 0.9953. Dengan demikian, penelitian ini membuktikan bahwa algoritma SVM dapat menjadi metode yang andal dalam memprediksi harga penutupan saham ANTAM serta berpotensi memberikan kontribusi praktis bagi investor dalam meminimalisasi risiko dan meningkatkan keuntungan investasi.

References

Aliano, D., Yulianti, O., & Harwini, D. (2024). The Role Of Money Markets In Supporting Economic Growth And Business Capital Development. JAM Journal of Accounting and Management, 1(1), 1-4. https://doi.org/10.70963/jam.v1i1.361

Almanaseer, S. (2024). The Impact Of Equity Financing On Financial Performance: Evidence From Jordan. Foundations of Management, 16(1), 157–176. https://doi.org/10.2478/fman-2024-0010

Angkoso, C. V., Asror, K., Kusumaningsih, A., & Nugroho, A. K. (2025). Optimasi Algoritma Support Vector Machine Berbasis Kernel Radial Basis Function (RBF) Menggunakan Metode Particle Swarm Optimization Untuk Analisis Sentimen. Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(3), 705–718. https://doi.org/10.25126/jtiik.20259317

Chang, V., Xu, Q. A., Chidozie, A., & Wang, H. (2024). Predicting Economic Trends and Stock Market Prices with Deep Learning and Advanced Machine Learning Techniques. Electronics (Switzerland), 13(17), 1-27. https://doi.org/10.3390/electronics13173396

Demircioğlu, A. (2024). The Effect Of Feature Normalization Methods In Radiomics. Insights into Imaging, 15(1),1-11. https://doi.org/10.1186/s13244-023-01575-7

Joseph, E., Mishra, A., Rabiu, I. (2019). Forecast on Close Stock Market Prediction using Support Vector Machine (SVM). International Journal of Engineering Research And, 8(2), 37–43. https://doi.org/10.17577/ijertv8is020031

Farikhah, F., Tarigan, P., & Sembiring, N. (2021). The Effect of Current Ratio and Net Profit Margin on Share Prices at PT Aneka Tambang Tbk Period 2018 - 2021. Journal of Accounting and Finance Management, 2(4), 169–177. https://doi.org/10.38035/jafm.v2i4.135

Izsák, T., Marák, L., & Ormos, M. (2023). Evaluation of Stock Price Prediction Based on the Support Vector. Applied Computer Science, 19(3), 64–82. https://doi.org/10.35784/acs-2023-25

Ji, S. (2024). Predict Stock Market Price By Applying ANN, SVM And Random Forest. SHS Web of Conferences, 196, 02005. https://doi.org/10.1051/shsconf/202419602005

Li, A., Wei, Q., Shi, Y., & Liu, Z. (2023). Research On Stock Price Prediction From A Data Fusion Perspective. Data Science In Finance And Economics, 3(3), 230–250. https://doi.org/10.3934/dsfe.2023014

Liyew, C. M., Di Nardo, E., Ferraris, S., & Meo, R. (2025). Hyperparameter Optimization Of Machine Learning Models For Predicting Actual Evapotranspiration. Machine Learning with Applications, 20, 100661. https://doi.org/10.1016/j.mlwa.2025.100661

Joel, L. O., Doorsamy, W., & Paul, B. S. (2022). A Review of Missing Data Handling Techniques for Machine Learning. International Journal of Innovative Technology and Interdisciplinary Sciences, 5(3), 971–1005. https://doi.org/10.15157/IJITIS.2022.5.3.971-1005

Rivai, A. (2023). The effect of gold, dollar and Composite Stock Price Index on cryptocurrency. International Journal of Research in Business and Social Science, 12(3), 231–236. https://doi.org/10.20525/ijrbs.v12i3.2561

Roy, B., & Yosef, A. (2019). Pertumbuhan Rohani Anak Dalam Keluarga Kristen Menurut Efesus 6:4. Jurnal Teknologi dan Pendidikan, 5(1), 52–69. https://doi.org/10.54793/teologi-dan-kependidikan.v5i1.4

Setiawan, I., Gernowo, R., & Warsito, B. (2023). A Systematic Literature Review on Missing Values: Research Trends, Datasets, Methods and Frameworks. E3S Web of Conferences, 448. https://doi.org/10.1051/e3sconf/202344802020

Yang, J. (2023). Support Vector Machine-Based Stock Prediction Analysis. Highlights in Business, Economics and Management, 3(2023), 12–18. https://doi.org/10.54097/hbem.v3i.4625

Yennimar, Y., Kelvin, K., Suwandi, S., & Amir, A. (2022). Comparison Analysis of SVM Algorithm with Linear Regression in Predicting used Car Prices. Jurnal Mantik, 5(4), 2720–2728.

Downloads

Published

2025-11-21

How to Cite

Latif, A. ., Astuti, D. K., & Arianty, R. (2025). Optimasi Model Support Vector Machine (SVM) Menggunakan GridSearchCV untuk Prediksi Harga Penutupan Saham PT Aneka Tambang Tbk (ANTAM). Decode: Jurnal Pendidikan Teknologi Informasi, 5(3), 1132–1144. https://doi.org/10.51454/decode.v5i3.1416

Issue

Section

Articles