Model Convolutional Neural Network (CNN) Custom Sequential untuk Klasifikasi Citra Ikan Hias Carassius Auratus pada Industri Akuakultur
DOI:
https://doi.org/10.51454/decode.v5i3.1229Keywords:
Akuakultur, Carassius auratus, CNN, Custom Sequential, Ikan HiasAbstract
Identifikasi varietas ikan hias Carassius auratus dengan keanekaragaman morfologi yang tinggi masih sering dilakukan secara manual, sehingga menimbulkan kesulitan bagi para pecinta ikan hias maupun pelaku akuakultur dalam membedakan jenisnya secara tepat. Kondisi ini menuntut adanya solusi berbasis teknologi yang mampu memberikan hasil identifikasi lebih cepat, praktis, dan presisi. Penelitian ini bertujuan untuk mengembangkan model klasifikasi citra menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur custom sequential sebagai sistem identifikasi visual otomatis. Tahapan penelitian dilakukan melalui pengumpulan 2.080 citra ikan yang mewakili delapan kelas varietas, dilanjutkan dengan proses pra-pemrosesan data agar citra siap digunakan pada tahap pelatihan model. Arsitektur CNN yang dibangun terdiri dari tujuh lapisan konvolusi dengan jumlah filter bertingkat mulai dari 32 hingga 256, disertai proses pooling, aktivasi ReLU, transformasi flatten, serta lapisan fully connected dengan mekanisme dropout untuk mengurangi overfitting, dan diakhiri dengan fungsi aktivasi softmax sebagai klasifikasi multi-kelas. Hasil eksperimen menunjukkan bahwa model mampu mengklasifikasikan citra ikan hias dengan tingkat akurasi mencapai 93,03% serta menghasilkan prediksi data uji secara konsisten tepat. Penelitian ini berkontribusi dalam menghadirkan pendekatan klasifikasi berbasis citra yang efisien, akurat, dan aplikatif, sehingga dapat mendukung proses identifikasi varietas ikan hias dalam industri akuakultur secara lebih modern dan berbasis teknologi.
References
Ahmed, M. S., Aurpa, T. T., & Azad, M. A. K. (2022). Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture. Journal of King Saud University - Computer and Information Sciences, 34(8), 5170–5182. https://doi.org/10.1016/j.jksuci.2021.05.003
Aristoteles, A., Heningtyas, Y., Syarif, A., & Pratidina, G. (2021). Implementation of Gabor Filter for Carassius Auratus’s Identification. International Journal on Advanced Science, Engineering and Information Technology, 11(2), 566–571. https://doi.org/10.18517/ijaseit.11.2.8128
Biondo, M. V., & Burki, R. P. (2020). A systematic review of the ornamental fish trade with emphasis on coral reef fishes—an impossible task. Animals, 10(11), 1–21. https://doi.org/10.3390/ani10112014
Cermakova, E., Lencova, S., Mukherjee, S., Horka, P., Vobruba, S., Demnerova, K., & Zdenkova, K. (2023). Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art. Foods, 12(1), 1–45. https://doi.org/10.3390/foods12010228
Haddad, D. M. D., & Mohammed, F. H. (2024). A Convolutional Neural Network Approach for Precision Fish Disease Detection. Evolutionary Studies in Imaginative Culture, 8, 1018–1033. https://doi.org/10.70082/esiculture.vi.1234
Hu, X., & Lima, M. F. (2024). The association between maintenance and biodiversity in urban green spaces: A review. Landscape and Urban Planning, 251(July), 105153. https://doi.org/10.1016/j.landurbplan.2024.105153
Li, D., Su, H., Jiang, K., Liu, D., & Duan, X. (2022). Fish Face Identification Based on Rotated Object Detection: Dataset and Exploration. Fishes, 7(5). https://doi.org/10.3390/fishes7050219
Li, H., Rajbahadur, G. K., Lin, D., Bezemer, C. P., & Jiang, Z. M. (2024). Keeping Deep Learning Models in Check: A History-Based Approach to Mitigate Overfitting. IEEE Access, 12, 70676–70689. https://doi.org/10.1109/ACCESS.2024.3402543
Liu, Z., Xu, Z., Jin, J., Shen, Z., & Darrell, T. (2023). Dropout Reduces Underfitting. Proceedings of Machine Learning Research, 202(June), 21715–21729. https://doi.org/10.48550/arXiv.2303.01500
Maia, C. M., Gauy, A. C. S., & Gonçalves-de-Freitas, E. (2025). Fish Welfare in the Ornamental Trade: Stress Factors, Legislation, and Emerging Initiatives. Fishes, 10(5), 1–16. https://doi.org/10.3390/fishes10050224
Moralista, R. B., & Rueda, R. B. (2023). E-Learning Development as an E-Teaching Innovation in Graduate Education. Journal of Advance Zoology, 44(3), 1770–1780. https://doi.org/10.17762/jaz.v44iS-3.1767
Multajam, R., Ayob, A. F. M., Sanjaya, W. S. M., Sambas, A., Rusyn, V., & Samila, A. (2024). Real-Time Detection and Classification of Fish in Underwater Environment Using Yolov5: a Comparative Study of Deep Learning Architectures. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 14(3), 91–95. https://doi.org/10.35784/iapgos.6022
Mol, J., Jose, S. A. (2024). Fish Species Classification Using Deep Learning and Appearance-Based Feature Extraction. Journal of Electrical Systems, 20(2), 2531–2546. https://doi.org/10.52783/jes.2026
Rodiah, R., Susetianingtias, D. T., & Patriya, E. (2024). Identifikasi Fitur Suara Menggunakan Model Convolutional Neural Network (CNN) pada Speech-to-Text (STT). Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 809–820. https://doi.org/10.51454/decode.v4i3.631
Salehin, I., & Kang, D. K. (2023). A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Domain. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143106
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0
Suhana, R., Mahmudy, W. F., & Budi, A. S. (2022). Fish Image Classification Using Adaptive Learning Rate In Transfer Learning Method. Knowledge Engineering and Data Science, 5(1), 67. https://doi.org/10.17977/um018v5i12022p67-77
Tarihoran, A. D. B., Hubeis, M., Jahroh, S., & Zulbainarni, N. (2024). Building a sustainable institutional model for ornamental fish farming export villages in Indonesia. International Journal of Agricultural Sustainability, 22(1), 1–24. https://doi.org/10.1080/14735903.2024.2401203
Wojciuk, M., Swiderska-Chadaj, Z., Siwek, K., & Gertych, A. (2024). Improving classification accuracy of fine-tuned CNN models: Impact of hyperparameter optimization. Heliyon, 10(5), e26586. https://doi.org/10.1016/j.heliyon.2024.e26586
Zhu, Z. (2024). Systematic Optimization of Overfitting Problem in Machine Learning. Highlights in Science, Engineering and Technology, 111, 353–359. https://doi.org/10.54097/3tkzrj84
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rodiah, Diana Tri Susetianingtias, Eka Patriya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









