Model Convolutional Neural Network (CNN) Custom Sequential untuk Klasifikasi Citra Ikan Hias Carassius Auratus pada Industri Akuakultur

Authors

  • Rodiah Informatika Universitas Gunadarma
  • Diana Tri Susetianingtias Sistem Komputer Universitas Gunadarma
  • Eka Patriya Manajemen Universitas Gunadarma

DOI:

https://doi.org/10.51454/decode.v5i3.1229

Keywords:

Akuakultur, Carassius auratus, CNN, Custom Sequential, Ikan Hias

Abstract

Identifikasi varietas ikan hias Carassius auratus dengan keanekaragaman morfologi yang tinggi masih sering dilakukan secara manual, sehingga menimbulkan kesulitan bagi para pecinta ikan hias maupun pelaku akuakultur dalam membedakan jenisnya secara tepat. Kondisi ini menuntut adanya solusi berbasis teknologi yang mampu memberikan hasil identifikasi lebih cepat, praktis, dan presisi. Penelitian ini bertujuan untuk mengembangkan model klasifikasi citra menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur custom sequential sebagai sistem identifikasi visual otomatis. Tahapan penelitian dilakukan melalui pengumpulan 2.080 citra ikan yang mewakili delapan kelas varietas, dilanjutkan dengan proses pra-pemrosesan data agar citra siap digunakan pada tahap pelatihan model. Arsitektur CNN yang dibangun terdiri dari tujuh lapisan konvolusi dengan jumlah filter bertingkat mulai dari 32 hingga 256, disertai proses pooling, aktivasi ReLU, transformasi flatten, serta lapisan fully connected dengan mekanisme dropout untuk mengurangi overfitting, dan diakhiri dengan fungsi aktivasi softmax sebagai klasifikasi multi-kelas. Hasil eksperimen menunjukkan bahwa model mampu mengklasifikasikan citra ikan hias dengan tingkat akurasi mencapai 93,03% serta menghasilkan prediksi data uji secara konsisten tepat. Penelitian ini berkontribusi dalam menghadirkan pendekatan klasifikasi berbasis citra yang efisien, akurat, dan aplikatif, sehingga dapat mendukung proses identifikasi varietas ikan hias dalam industri akuakultur secara lebih modern dan berbasis teknologi.

References

Ahmed, M. S., Aurpa, T. T., & Azad, M. A. K. (2022). Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture. Journal of King Saud University - Computer and Information Sciences, 34(8), 5170–5182. https://doi.org/10.1016/j.jksuci.2021.05.003

Aristoteles, A., Heningtyas, Y., Syarif, A., & Pratidina, G. (2021). Implementation of Gabor Filter for Carassius Auratus’s Identification. International Journal on Advanced Science, Engineering and Information Technology, 11(2), 566–571. https://doi.org/10.18517/ijaseit.11.2.8128

Biondo, M. V., & Burki, R. P. (2020). A systematic review of the ornamental fish trade with emphasis on coral reef fishes—an impossible task. Animals, 10(11), 1–21. https://doi.org/10.3390/ani10112014

Cermakova, E., Lencova, S., Mukherjee, S., Horka, P., Vobruba, S., Demnerova, K., & Zdenkova, K. (2023). Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art. Foods, 12(1), 1–45. https://doi.org/10.3390/foods12010228

Haddad, D. M. D., & Mohammed, F. H. (2024). A Convolutional Neural Network Approach for Precision Fish Disease Detection. Evolutionary Studies in Imaginative Culture, 8, 1018–1033. https://doi.org/10.70082/esiculture.vi.1234

Hu, X., & Lima, M. F. (2024). The association between maintenance and biodiversity in urban green spaces: A review. Landscape and Urban Planning, 251(July), 105153. https://doi.org/10.1016/j.landurbplan.2024.105153

Li, D., Su, H., Jiang, K., Liu, D., & Duan, X. (2022). Fish Face Identification Based on Rotated Object Detection: Dataset and Exploration. Fishes, 7(5). https://doi.org/10.3390/fishes7050219

Li, H., Rajbahadur, G. K., Lin, D., Bezemer, C. P., & Jiang, Z. M. (2024). Keeping Deep Learning Models in Check: A History-Based Approach to Mitigate Overfitting. IEEE Access, 12, 70676–70689. https://doi.org/10.1109/ACCESS.2024.3402543

Liu, Z., Xu, Z., Jin, J., Shen, Z., & Darrell, T. (2023). Dropout Reduces Underfitting. Proceedings of Machine Learning Research, 202(June), 21715–21729. https://doi.org/10.48550/arXiv.2303.01500

Maia, C. M., Gauy, A. C. S., & Gonçalves-de-Freitas, E. (2025). Fish Welfare in the Ornamental Trade: Stress Factors, Legislation, and Emerging Initiatives. Fishes, 10(5), 1–16. https://doi.org/10.3390/fishes10050224

Moralista, R. B., & Rueda, R. B. (2023). E-Learning Development as an E-Teaching Innovation in Graduate Education. Journal of Advance Zoology, 44(3), 1770–1780. https://doi.org/10.17762/jaz.v44iS-3.1767

Multajam, R., Ayob, A. F. M., Sanjaya, W. S. M., Sambas, A., Rusyn, V., & Samila, A. (2024). Real-Time Detection and Classification of Fish in Underwater Environment Using Yolov5: a Comparative Study of Deep Learning Architectures. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 14(3), 91–95. https://doi.org/10.35784/iapgos.6022

Mol, J., Jose, S. A. (2024). Fish Species Classification Using Deep Learning and Appearance-Based Feature Extraction. Journal of Electrical Systems, 20(2), 2531–2546. https://doi.org/10.52783/jes.2026

Rodiah, R., Susetianingtias, D. T., & Patriya, E. (2024). Identifikasi Fitur Suara Menggunakan Model Convolutional Neural Network (CNN) pada Speech-to-Text (STT). Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 809–820. https://doi.org/10.51454/decode.v4i3.631

Salehin, I., & Kang, D. K. (2023). A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Domain. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143106

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0

Suhana, R., Mahmudy, W. F., & Budi, A. S. (2022). Fish Image Classification Using Adaptive Learning Rate In Transfer Learning Method. Knowledge Engineering and Data Science, 5(1), 67. https://doi.org/10.17977/um018v5i12022p67-77

Tarihoran, A. D. B., Hubeis, M., Jahroh, S., & Zulbainarni, N. (2024). Building a sustainable institutional model for ornamental fish farming export villages in Indonesia. International Journal of Agricultural Sustainability, 22(1), 1–24. https://doi.org/10.1080/14735903.2024.2401203

Wojciuk, M., Swiderska-Chadaj, Z., Siwek, K., & Gertych, A. (2024). Improving classification accuracy of fine-tuned CNN models: Impact of hyperparameter optimization. Heliyon, 10(5), e26586. https://doi.org/10.1016/j.heliyon.2024.e26586

Zhu, Z. (2024). Systematic Optimization of Overfitting Problem in Machine Learning. Highlights in Science, Engineering and Technology, 111, 353–359. https://doi.org/10.54097/3tkzrj84

Downloads

Published

2025-09-10

How to Cite

Rodiah, Susetianingtias, D. T., & Patriya, E. (2025). Model Convolutional Neural Network (CNN) Custom Sequential untuk Klasifikasi Citra Ikan Hias Carassius Auratus pada Industri Akuakultur. Decode: Jurnal Pendidikan Teknologi Informasi, 5(3), 813–825. https://doi.org/10.51454/decode.v5i3.1229

Issue

Section

Articles