Peramalan Kadar PM10 Menggunakan Algoritma Long Short-Term Memory (LSTM) Sebagai Acuan Ketersediaan Ruang Terbuka Hijau Di Kota Jambi
DOI:
https://doi.org/10.51454/decode.v5i1.866Keywords:
Long Short-Term Memory, Peramalan, PM10, PolutanAbstract
Pada tahun 2023 jumlah kendaraan bermotor di Kota Jambi hampir mencapai 960.814 unit. Peningkatan volume lalu lintas akan menyebabkan peningkatan emisi polusi udara, yang dapat mengurangi kualitas udara. Salah satu polutannya adalah PM10, yang berkontribusi terhadap polusi udara. Particulate matter 10 (PM10) adalah partikel materi yang berukuran kurang dari 10 mikrometer. PM10 dapat berdampak negatif pada sistem pernapasan, seperti serangan asma, penurunan fungsi paru-paru, dan bahkan kematian. Salah satu solusi untuk mengatasi masalah polusi udara di Jambi adalah melalui pengembangan prediksi temporal kualitas udara menggunakan data historis. Dengan membangun model prediksi berdasarkan indeks polutan, kita dapat memproyeksikan kualitas udara secara harian. Penelitian ini bertujuan untuk membuat model prediksi konsentrasi PM10 di Kota Jambi dengan metode Long Short Term Memory. Data yang digunakan adalah data konsentrasi PM10 pada bulan Januari sampai Juni 2024 menggunakan algoritma jaringan saraf tiruan Long Short-Term Memory (LSTM). Penelitian ini dilakukan melalui beberapa tahapan yaitu pengumpulan data, praproses data, pembagian data, pembuatan model prediksi konsentrasi PM10, dan MAPE. Penelitian ini menghasilkan model prediksi konsentrasi PM10 dengan nilai RMSE sebesar 0,021 dan MAPE 0,11%, yang berarti model peramalan memiliki peramalan yang sangat akurat. Dengan kemampuannya memprediksi kadar PM10 di masa depan berdasarkan pola historis. Informasi ini krusial dalam menentukan prioritas pengembangan RTH.
References
Abdoli, G., MehrAra, M., & Ebrahim Ardalani, M. (2020). Comparing The Prediction Accuracy Of Lstm And Arima Models For Time-Series With Permanent Fluctuation. Gênero & Direito, 9(2). https://doi.org/10.22478/ufpb.2179-7137.2020v9n2.50782
Aji Tritamtama, K., Sembiring, F. E. S., Choiruddin, A., & Patria, H. (2023). Analysis of Air Pollution (SO2) at Some Point of Congestion in DKI Jakarta. Disease Prevention and Public Health Journal, 17(1), 82–92. https://doi.org/10.12928/dpphj.v17i1.6147
Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences. https://doi.org/10.3923/jeasci.2017.4102.4107
Chiam, Z., Song, X. P., Lai, H. R., & Tan, H. T. W. (2019). Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Science of The Total Environment, 688, 398–408. https://doi.org/10.1016/j.scitotenv.2019.06.263
Gupta, A., Moniruzzaman, M., Hande, A., Rousta, I., Olafsson, H., & Mondal, K. K. (2020). Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh. SN Applied Sciences. https://doi.org/10.1007/s42452-020-03829-1
Henderi, H. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. IJIIS: International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
Huang, R., Wei, C., Wang, B., Yang, J., Xu, X., Wu, S., & Huang, S. (2022). Well performance prediction based on Long Short-Term Memory (LSTM) neural network. Journal of Petroleum Science and Engineering, 208, 109686. https://doi.org/10.1016/j.petrol.2021.109686
Joshi, N., Joshi, A., & Bist, B. (2020). Phytomonitoring and Mitigation of Air Pollution by Plants. In Sustainable Agriculture in the Era of Climate Change (pp. 113–142). Springer International Publishing. https://doi.org/10.1007/978-3-030-45669-6_5
Kumar, J. Y., & Kumar, B. S. (2011). Min max normalization based data perturbation method for privacy protection. International Journal of Computer & Communication Technology.
Latif, N., Selvam, J. D., Kapse, M., Sharma, V., & Mahajan, V. (2023). Comparative Performance of LSTM and ARIMA for the Short-Term Prediction of Bitcoin Prices. Australasian Accounting, Business and Finance Journal, 17(1), 256–276. https://doi.org/10.14453/aabfj.v17i1.15
Lin, W.-C., & Tsai, C.-F. (2020). Missing value imputation: a review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53(2), 1487–1509. https://doi.org/10.1007/s10462-019-09709-4
Maduna, K., & Tomašić, V. (2017). Air pollution engineering. Physical Sciences Reviews, 2(12). https://doi.org/10.1515/psr-2016-0122
Malsa, N., Vyas, V., & Gautam, J. (2021). RMSE calculation of LSTM models for predicting prices of different cryptocurrencies. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-021-01431-1
Mangones, S. C., Jaramillo, P., Rojas, N. Y., & Fischbeck, P. (2020). Air pollution emission effects of changes in transport supply: the case of Bogotá, Colombia. Environmental Science and Pollution Research, 27(29), 35971–35978. https://doi.org/10.1007/s11356-020-08481-1
Meo, S. A., Almutairi, F. J., Abukhalaf, A. A., & Usmani, A. M. (2021). Effect of Green Space Environment on Air Pollutants PM2.5, PM10, CO, O3, and Incidence and Mortality of SARS-CoV-2 in Highly Green and Less-Green Countries. International Journal of Environmental Research and Public Health, 18(24), 13151. https://doi.org/10.3390/ijerph182413151
Mohd Pauzi, N. A., Wah, Y. B., Deni, S. M., Abdul Rahim, S. K. N., & Suhartono. (2021). Comparison of Single and MICE Imputation Methods for Missing Values: A Simulation Study. Pertanika Journal of Science and Technology, 29(2). https://doi.org/10.47836/pjst.29.2.15
Prasetyowati, S. A. D., Ismail, M., Budisusila, E. N., Setiadi, D. R. I. M., & Purnomo, M. H. (2022). Dataset Feasibility Analysis Method based on Enhanced Adaptive LMS method with Min-max Normalization and Fuzzy Intuitive Sets. International Journal on Electrical Engineering and Informatics, 14(1), 55–75. https://doi.org/10.15676/ijeei.2022.14.1.4
Prasher, S., Nelson, L., & Jagdish, M. (2023). Potato leaf disease prediction using RMSProp, Adam and SGD optimizers. 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 343–347. https://doi.org/10.1109/InCACCT57535.2023.10141714
Priyankara, S., Senarathna, M., Jayaratne, R., Morawska, L., Abeysundara, S., Weerasooriya, R., Knibbs, L. D., Dharmage, S. C., Yasaratne, D., & Bowatte, G. (2021). Ambient PM2.5 and PM10 Exposure and Respiratory Disease Hospitalization in Kandy, Sri Lanka. International Journal of Environmental Research and Public Health, 18(18). https://doi.org/10.3390/ijerph18189617
Ren, L., Wang, T., Sekhari Seklouli, A., Zhang, H., & Bouras, A. (2023). A review on missing values for main challenges and methods. In Information Systems. https://doi.org/10.1016/j.is.2023.102268
Saputra, R., Handika, R. A., & Lestari, R. A. (2019). Analisis Sebaran Polutan Particulate Matter (PM10) Pada Harian Musim Kemarau di Kota Jambi. Jurnal Engineering, 1(1). https://doi.org/10.22437/jurnalengineering.v1i1.6276
Shao, S., McAleer, S., Yan, R., & Baldi, P. (2019). Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2018.2864759
Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2019). A Comparison of ARIMA and LSTM in Forecasting Time Series. Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. https://doi.org/10.1109/ICMLA.2018.00227
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L., & Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682. https://doi.org/10.1016/j.petrol.2019.106682
Vlasov, D., Ramírez, O., & Luhar, A. (2022). Road Dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. In Atmosphere. https://doi.org/10.3390/atmos13040607
Wang, Y., Yuan, Y., Wang, Q., Liu, C. G., Zhi, Q., & Cao, J. (2020). Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139133
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31(7), 1235–1270. https://doi.org/10.1162/neco_a_01199
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ulfa Khaira, Mutia Fadhila Putri, Shally Yanova

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









