Classification Of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50
DOI:
https://doi.org/10.51454/decode.v4i3.822Keywords:
Classification Palm Oil, Convolutional Neural Network, RestNet50 ModellingAbstract
Accurate classification of palm fruit maturity levels is very important to optimize harvest time and increase production efficiency in the palm oil industry. Traditional methods that rely on visual assessment of factors such as fruit shedding and skin discoloration are prone to human error. To overcome this limitation, this research applies deep learning techniques, specifically using Convolutional Neural Network (CNN) with ResNet-50 architecture, to classify Fresh Fruit Bunches (FFB) into two stages of maturity: unripe and ripe. The model is trained and validated using a combination of data augmentation techniques to improve model performance. Various configurations were tested, including variations in data sharing, optimizer, and learning rate. The optimal configuration—90/10 training and validation data split, Adam optimizer, and learning rate of 0.0001—resulted in excellent model performance. The ResNet-50 model achieved 97% accuracy, with 96% precision, 98% recall, and an F1 score of 97%. This metric reflects the high reliability of the model in classifying palm fruit maturity levels, significantly reducing classification errors compared to traditional methods. This research highlights the transformational potential of deep learning to improve maturity classification in the palm oil industry, by offering a more efficient, accurate and automated approach. Further research should focus on expanding the dataset to increase model robustness as well as exploring real-time implementation to further improve decision making in palm oil production. This approach promises to increase agricultural efficiency by ensuring optimal harvest timing and better resource management.
References
Alfatni, M. S. M., Khairunniza-Bejo, S., Marhaban, M. H. B., Saaed, O. M. B., Mustapha, A., & Shariff, A. R. M. (2022). Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis. Agriculture (Switzerland), 12(9). https://doi.org/10.3390/agriculture12091461
Astuti, R., Miller, M. A., McGregor, A., Sukmara, M. D. P., Saputra, W., Sulistyanto, & Taylor, D. (2022). Making illegality visible: The governance dilemmas created by visualising illegal palm oil plantations in Central Kalimantan, Indonesia. Land Use Policy, 114. https://doi.org/10.1016/j.landusepol.2021.105942
Citra, B., Green, R. E. D., & Rgb, B. (2023). Penerapan Algoritma Deep Learning Convolutional Neural Network Dalam Menentukan Kematangan Buah Jeruk Manis Application Of The Deep Learning Convolutional Neural Network Algorithm In Determining The Murability Of Sweet Orange Fruit Based On Images Red Gre. 10(1), 59–66. https://doi.org/10.25126/jtiik.2023105695
Darmadi, N. S., Bawono, B. T., & Hafidz, J. (2023). Forest Land Conversion for Oil Palm Plantations and Legal Protection and Social Welfare of Indigenous Communities. Environment and Ecology Research, 11(3). https://doi.org/10.13189/eer.2023.110306
Hasnah Faizah AR, Dwi Mulyani, & Nike Tri Juliana. (2023). Kesalahan Penulisan Arab Melayu Dalam Teks Bacaan Pisang Berbuah. Perspektif : Jurnal Pendidikan Dan Ilmu Bahasa, 1(4). https://doi.org/10.59059/perspektif.v1i4.684
Kurniawan, A. K., Andi Sunyoto, & Alva Hendi Muhammad. (2023). Detection of Palm Fruit Maturity Using Convolutional Neural Network Method. JAIA - Journal of Artificial Intelligence and Applications, 2(2). https://doi.org/10.33372/jaia.v2i2.859
Kurniawan, R., Martadinata, A. T., & Cahyo, S. D. (2023). Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5. Journal of Information System Research (JOSH), 5(1). https://doi.org/10.47065/josh.v5i1.4408
Leonardi, M. A., & Chandra, A. Y. (2024). Analisis Perbandingan CNN dan Vision Transformer untuk Klasifikasi Biji Kopi Hasil Sangrai. 8, 1398–1407. https://doi.org/10.30865/mib.v8i3.7732
Misron, N., Aliteh, N. A., Harun, N. H., Tashiro, K., Sato, T., & Wakiwaka, H. (2017). Relative estimation of water content for flat-type inductive-based oil palm fruit maturity sensor. Sensors (Switzerland), 17(1). https://doi.org/10.3390/s17010052
Misron, N., Azhar, N. S. K., Hamidon, M. N., Aris, I., Tashiro, K., & Nagata, H. (2020). Fruit battery with charging concept for oil palm maturity sensor. Sensors (Switzerland), 20(1). https://doi.org/10.3390/s20010226
Mohammad Yazdi Pusadan, Indah Safitri, & Wirdayanti. (2023). The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(6). https://doi.org/10.29207/resti.v7i6.5558
Purnomo, E. P., Ramdani, R., Agustiyara, Tomaro, Q. P. V., & Samidjo, G. S. (2019). Land ownership transformation before and after forest fires in Indonesian palm oil plantation areas. Journal of Land Use Science, 14(1). https://doi.org/10.1080/1747423X.2019.1614686
Raj, T., Hashim, F. H., Huddin, A. B., Hussain, A., Ibrahim, M. F., & Abdul, P. M. (2021). Classification of oil palm fresh fruit maturity based on carotene content from Raman spectra. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97857-5
S, K. S., Taufik, I., Niska, D. Y., Fairozi, R., Hidayat, M., & Al-Areef, M. H. (2023). Penerapan Algoritma Convolutional Neural Network Untuk Menentukan Retinopati Hipertensi Melalui Citra Retina Fundus. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(2). https://doi.org/10.34012/jutikomp.v6i2.4307
Salim, E., & Suharjito. (2023). Hyperparameter optimization of YOLOv4 tiny for palm oil fresh fruit bunches maturity detection using genetics algorithms. Smart Agricultural Technology, 6. https://doi.org/10.1016/j.atech.2023.100364
Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023a). Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3). https://doi.org/10.29207/resti.v7i3.4731
Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023b). Comparative Analysis of SVM and Perceptron Algorithms in Classification of Work Programs. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(2). https://doi.org/10.30812/matrik.v22i2.2479
Siwilopo, K. P., & Marcos, H. (2023). MEMBANDINGKAN KLASIFIKASI PADA BUAH JERUK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN K-NEAREST NEIGHBOR. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(1). https://doi.org/10.34010/komputa.v12i1.9068
Soekarta, R., Nurdjan, N., & Syah, A. (2023). Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN). Insect (Informatics and Security): Jurnal Teknik Informatika, 8(2). https://doi.org/10.33506/insect.v8i2.2356
Syaifuddin, A., Mualifah, L. N. A., Hidayat, L., & Abadi, A. M. (2020). Detection of palm fruit maturity level in the grading process through image recognition and fuzzy inference system to improve quality and productivity of crude palm oil (CPO). Journal of Physics: Conference Series, 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012003
Viola Widyasari, S., Ihsan Muttaqin, M., Putri Ananda, T., & Stefanie, A. (2023). IMPLEMENTASI INTERNET OF THINGS PADA SISTEM MONITORING KEMATANGAN BUAH PEPAYA CALIFORNIA DENGAN METODE DEEP LEARNING. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3). https://doi.org/10.36040/jati.v7i3.6953
Yanto`, B., Maria Angela Kartawidjaja, Ronald Sukwadi, & Marsellinus Bachtiar. (2023). Implementation of Hue Saturation Intensity (Hsi) Color Space Transformation Algorithm With Red, Green, Blue (Rgb) Color Brightness in Assessing Tomato Fruit Maturity. RJOCS (Riau Journal of Computer Science), 9(2), 167–178. https://doi.org/10.30606/rjocs.v9i2.2428
Yanto, B., -, B., -, J., & Hayadi, B. H. (2020). INDENTIFIKASI POLA AKSARA ARAB MELAYU DENGAN JARINGAN SYARAF TIRUAN CONVOLUTIONAL NEURAL NETWORK (CNN). JSAI (Journal Scientific and Applied Informatics), 3(3). https://doi.org/10.36085/jsai.v3i3.1151
Yanto, B., Fimawahib, L., Supriyanto, A., Hayadi, B. H., & Pratama, R. R. (2021). Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network. INOVTEK Polbeng - Seri Informatika, 6(2). https://doi.org/10.35314/isi.v6i2.2104
Yanto, B., Rouza, E., Fimawahib, L., Hayadi, B. H., & Pratama, R. R. (2023). Penerapan Algoritma Deep Learning Convolutional Neural Network Dalam Menentukan Kematangan Buah Jeruk Manis Berdasarkan Citra Red Green Blue (RGB). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(1). https://doi.org/10.25126/jtiik.20231015695
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Elyandri Prasiwiningrum, Adyanata Lubis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.