Classification Of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50

Authors

  • Elyandri Prasiwiningrum Computer Science Universitas Rokania
  • Adyanata Lubis Computer Science Universitas Rokania

DOI:

https://doi.org/10.51454/decode.v4i3.822

Keywords:

Classification Palm Oil, Convolutional Neural Network, RestNet50 Modelling

Abstract

Accurate classification of palm fruit maturity levels is very important to optimize harvest time and increase production efficiency in the palm oil industry. Traditional methods that rely on visual assessment of factors such as fruit shedding and skin discoloration are prone to human error. To overcome this limitation, this research applies deep learning techniques, specifically using Convolutional Neural Network (CNN) with ResNet-50 architecture, to classify Fresh Fruit Bunches (FFB) into two stages of maturity: unripe and ripe. The model is trained and validated using a combination of data augmentation techniques to improve model performance. Various configurations were tested, including variations in data sharing, optimizer, and learning rate. The optimal configuration—90/10 training and validation data split, Adam optimizer, and learning rate of 0.0001—resulted in excellent model performance. The ResNet-50 model achieved 97% accuracy, with 96% precision, 98% recall, and an F1 score of 97%. This metric reflects the high reliability of the model in classifying palm fruit maturity levels, significantly reducing classification errors compared to traditional methods. This research highlights the transformational potential of deep learning to improve maturity classification in the palm oil industry, by offering a more efficient, accurate and automated approach. Further research should focus on expanding the dataset to increase model robustness as well as exploring real-time implementation to further improve decision making in palm oil production. This approach promises to increase agricultural efficiency by ensuring optimal harvest timing and better resource management.

References

Alfatni, M. S. M., Khairunniza-Bejo, S., Marhaban, M. H. B., Saaed, O. M. B., Mustapha, A., & Shariff, A. R. M. (2022). Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis. Agriculture (Switzerland), 12(9). https://doi.org/10.3390/agriculture12091461

Astuti, R., Miller, M. A., McGregor, A., Sukmara, M. D. P., Saputra, W., Sulistyanto, & Taylor, D. (2022). Making illegality visible: The governance dilemmas created by visualising illegal palm oil plantations in Central Kalimantan, Indonesia. Land Use Policy, 114. https://doi.org/10.1016/j.landusepol.2021.105942

Citra, B., Green, R. E. D., & Rgb, B. (2023). Penerapan Algoritma Deep Learning Convolutional Neural Network Dalam Menentukan Kematangan Buah Jeruk Manis Application Of The Deep Learning Convolutional Neural Network Algorithm In Determining The Murability Of Sweet Orange Fruit Based On Images Red Gre. 10(1), 59–66. https://doi.org/10.25126/jtiik.2023105695

Darmadi, N. S., Bawono, B. T., & Hafidz, J. (2023). Forest Land Conversion for Oil Palm Plantations and Legal Protection and Social Welfare of Indigenous Communities. Environment and Ecology Research, 11(3). https://doi.org/10.13189/eer.2023.110306

Hasnah Faizah AR, Dwi Mulyani, & Nike Tri Juliana. (2023). Kesalahan Penulisan Arab Melayu Dalam Teks Bacaan Pisang Berbuah. Perspektif : Jurnal Pendidikan Dan Ilmu Bahasa, 1(4). https://doi.org/10.59059/perspektif.v1i4.684

Kurniawan, A. K., Andi Sunyoto, & Alva Hendi Muhammad. (2023). Detection of Palm Fruit Maturity Using Convolutional Neural Network Method. JAIA - Journal of Artificial Intelligence and Applications, 2(2). https://doi.org/10.33372/jaia.v2i2.859

Kurniawan, R., Martadinata, A. T., & Cahyo, S. D. (2023). Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5. Journal of Information System Research (JOSH), 5(1). https://doi.org/10.47065/josh.v5i1.4408

Leonardi, M. A., & Chandra, A. Y. (2024). Analisis Perbandingan CNN dan Vision Transformer untuk Klasifikasi Biji Kopi Hasil Sangrai. 8, 1398–1407. https://doi.org/10.30865/mib.v8i3.7732

Misron, N., Aliteh, N. A., Harun, N. H., Tashiro, K., Sato, T., & Wakiwaka, H. (2017). Relative estimation of water content for flat-type inductive-based oil palm fruit maturity sensor. Sensors (Switzerland), 17(1). https://doi.org/10.3390/s17010052

Misron, N., Azhar, N. S. K., Hamidon, M. N., Aris, I., Tashiro, K., & Nagata, H. (2020). Fruit battery with charging concept for oil palm maturity sensor. Sensors (Switzerland), 20(1). https://doi.org/10.3390/s20010226

Mohammad Yazdi Pusadan, Indah Safitri, & Wirdayanti. (2023). The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(6). https://doi.org/10.29207/resti.v7i6.5558

Purnomo, E. P., Ramdani, R., Agustiyara, Tomaro, Q. P. V., & Samidjo, G. S. (2019). Land ownership transformation before and after forest fires in Indonesian palm oil plantation areas. Journal of Land Use Science, 14(1). https://doi.org/10.1080/1747423X.2019.1614686

Raj, T., Hashim, F. H., Huddin, A. B., Hussain, A., Ibrahim, M. F., & Abdul, P. M. (2021). Classification of oil palm fresh fruit maturity based on carotene content from Raman spectra. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97857-5

S, K. S., Taufik, I., Niska, D. Y., Fairozi, R., Hidayat, M., & Al-Areef, M. H. (2023). Penerapan Algoritma Convolutional Neural Network Untuk Menentukan Retinopati Hipertensi Melalui Citra Retina Fundus. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(2). https://doi.org/10.34012/jutikomp.v6i2.4307

Salim, E., & Suharjito. (2023). Hyperparameter optimization of YOLOv4 tiny for palm oil fresh fruit bunches maturity detection using genetics algorithms. Smart Agricultural Technology, 6. https://doi.org/10.1016/j.atech.2023.100364

Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023a). Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3). https://doi.org/10.29207/resti.v7i3.4731

Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023b). Comparative Analysis of SVM and Perceptron Algorithms in Classification of Work Programs. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(2). https://doi.org/10.30812/matrik.v22i2.2479

Siwilopo, K. P., & Marcos, H. (2023). MEMBANDINGKAN KLASIFIKASI PADA BUAH JERUK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN K-NEAREST NEIGHBOR. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(1). https://doi.org/10.34010/komputa.v12i1.9068

Soekarta, R., Nurdjan, N., & Syah, A. (2023). Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN). Insect (Informatics and Security): Jurnal Teknik Informatika, 8(2). https://doi.org/10.33506/insect.v8i2.2356

Syaifuddin, A., Mualifah, L. N. A., Hidayat, L., & Abadi, A. M. (2020). Detection of palm fruit maturity level in the grading process through image recognition and fuzzy inference system to improve quality and productivity of crude palm oil (CPO). Journal of Physics: Conference Series, 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012003

Viola Widyasari, S., Ihsan Muttaqin, M., Putri Ananda, T., & Stefanie, A. (2023). IMPLEMENTASI INTERNET OF THINGS PADA SISTEM MONITORING KEMATANGAN BUAH PEPAYA CALIFORNIA DENGAN METODE DEEP LEARNING. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3). https://doi.org/10.36040/jati.v7i3.6953

Yanto`, B., Maria Angela Kartawidjaja, Ronald Sukwadi, & Marsellinus Bachtiar. (2023). Implementation of Hue Saturation Intensity (Hsi) Color Space Transformation Algorithm With Red, Green, Blue (Rgb) Color Brightness in Assessing Tomato Fruit Maturity. RJOCS (Riau Journal of Computer Science), 9(2), 167–178. https://doi.org/10.30606/rjocs.v9i2.2428

Yanto, B., -, B., -, J., & Hayadi, B. H. (2020). INDENTIFIKASI POLA AKSARA ARAB MELAYU DENGAN JARINGAN SYARAF TIRUAN CONVOLUTIONAL NEURAL NETWORK (CNN). JSAI (Journal Scientific and Applied Informatics), 3(3). https://doi.org/10.36085/jsai.v3i3.1151

Yanto, B., Fimawahib, L., Supriyanto, A., Hayadi, B. H., & Pratama, R. R. (2021). Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network. INOVTEK Polbeng - Seri Informatika, 6(2). https://doi.org/10.35314/isi.v6i2.2104

Yanto, B., Rouza, E., Fimawahib, L., Hayadi, B. H., & Pratama, R. R. (2023). Penerapan Algoritma Deep Learning Convolutional Neural Network Dalam Menentukan Kematangan Buah Jeruk Manis Berdasarkan Citra Red Green Blue (RGB). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(1). https://doi.org/10.25126/jtiik.20231015695

Downloads

Published

2024-11-07

How to Cite

Prasiwiningrum, E., & Adyanata Lubis. (2024). Classification Of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50. Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 983–999. https://doi.org/10.51454/decode.v4i3.822

Issue

Section

Articles