Sistem Pakar Gizi Balita: Kerangka Kerja Konseptual Untuk Deteksi Gizi Buruk

Authors

  • Suryanto Nugroho Informatika ITS PKU Muhammadiyah Surakarta
  • Nugroho Arif Sudibyo Informatika Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.51454/decode.v4i3.810

Keywords:

Dempster Shafer, Kerangka Kerja Konseptual, Multi Attribute Decision Making, Sistem Pakar

Abstract

Penelitian ini bertujuan untuk mengembangkan kerangka kerja sistem pakar yang dapat mendeteksi gizi buruk pada balita melalui penerapan teori Dempster-Shafer dan metode Pengambilan Keputusan Berbasis Multi-Atribut (MADM). Kerangka kerja ini dirancang untuk meningkatkan akurasi dan efisiensi dalam proses diagnosis dengan memanfaatkan analisis ketidakpastian yang dihadapi oleh anak-anak. Melalui integrasi kedua pendekatan tersebut, sistem pakar diharapkan dapat memberikan rekomendasi yang tepat dan relevan berdasarkan gejala yang dimasukkan oleh pengguna. Selain itu, penelitian ini juga menekankan pentingnya akuisisi pengetahuan dari para ahli gizi untuk membangun basis pengetahuan yang kuat, sehingga sistem dapat beradaptasi dengan kebutuhan diagnosis dan perkembangan pengetahuan gizi terkini. Kerangka kerja yang diusulkan diharapkan dapat menjadi alat yang efektif bagi tenaga kesehatan dalam mengidentifikasi dan menangani masalah gizi buruk, serta meningkatkan kesadaran masyarakat tentang pentingnya kesehatan gizi anak.

References

De Onis, M., Borghi, E., Arimond, M., Webb, P., Croft, T., Saha, K., De-Regil, L. M., Thuita, F., Heidkamp, R., Krasevec, J., Hayashi, C., & Flores-Ayala, R. (2019). Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutrition, 22(1), 175–179. https://doi.org/10.1017/S1368980018002434

Fei, L., Li, T., & Ding, W. (2024). Dempster–Shafer theory-based information fusion for natural disaster emergency management: A systematic literature review. Information Fusion, 112. https://doi.org/10.1016/j.inffus.2024.102585

Fei, L., Li, T., Liu, X., & Ding, W. (2025). A novel multi-source information fusion method for emergency spatial resilience assessment based on Dempster-Shafer theory. Information Sciences, 686. https://doi.org/10.1016/j.ins.2024.121373

Hernando, A., Galán-García, J. L., & Aguilera-Venegas, G. (2024). A novel way to build expert systems with infinite-valued attributes. AIMS Mathematics, 9(2), 2938–2963. https://doi.org/10.3934/math.2024145

Ikechukwu Nkuma-Udah, K., Azogini Chukwudebe, G., & Nwabueze Ekwonwune, E. (2018). Medical Diagnosis Expert System for Malaria and Related Diseases for Developing Countries. E-Health Telecommunication Systems and Networks, 07(02), 43–56. https://doi.org/10.4236/etsn.2018.72002

Liu, Z., Xu, H., Zhao, X., Liu, P., & Li, J. (2019). Multi-Attribute Group Decision Making Based on Intuitionistic Uncertain Linguistic Hamy Mean Operators with Linguistic Scale Functions and Its Application to Health-Care Waste Treatment Technology Selection. IEEE Access, 7, 20–46. https://doi.org/10.1109/ACCESS.2018.2882508

Mazhar, T., & Qandeel Nasir, Inayatul Haq, Mian Muhammad Kamal, Inam Ullah, Taejoon Kim, Heba G. Mohamed, N. A. (2022). A Novel Expert System for the Diagnosis and Treatment of Heart Disease. Electronics (Switzerland), 289(2), 236.

Mokarram, M., & Mohammadizadeh, P. (2021). Prediction of Karst Suitable Area Using Fuzzy AHP Method and Dempster-Shafer Theory. Earth and Space Science, 8(11), 1–13. https://doi.org/10.1029/2019EA000719

Nahar, K. M. O., Banikhalaf, M., Ibrahim, F., Abual-Rub, M., Almomani, A., & Gupta, B. B. (2023). A Rule-Based Expert Advisory System for Restaurants Using Machine Learning and Knowledge-Based Systems Techniques. International Journal on Semantic Web and Information Systems, 19(1). https://doi.org/10.4018/IJSWIS.333064

Norhisham, S., Ismail, A., Borhan, M. N., & Katman, H. Y. (2017). An Exploration on the Developing of Expert System in Transport Engineering. MATEC Web of Conferences, 103. https://doi.org/10.1051/matecconf/201710309014

Ntenda, P. A. M. (2019). Association of low birth weight with undernutrition in preschool-aged children in Malawi. Nutrition Journal, 18(1), 1–15. https://doi.org/10.1186/s12937-019-0477-8

Pambudi, W., Farah, F., Santoso, A. H., Edbert, B., Angelina, D., & Septianti, N. S. (2023). Survei Pengukuran Status Gizi Balita dan Pola Pemberian Makanan Pendamping ASI di RPTRA Mandala Kelurahan Tomang Jakarta Barat. Jurnal Bakti Masyarakat Indonesia, 6(1), 75–82.

Rybina, G. V., & Blokhin, Y. M. (2019). Methods and Software Implementation of Intelligent Planning for Integrated Expert System Design. Scientific and Technical Information Processing, 46(6), 434–445. https://doi.org/10.3103/S0147688219060091

Sojak, M., Głowacki, S., Tulej, W., Bryś, A., Hutsol, T., Horetska, I., Stroianovska, L., Rozkosz, A., & Prístavka, M. (2023). The Expert System Supporting Decision-Making in the Process of Vegetable Pests Extermination during Vegetation Period. Agricultural Engineering, 27(1), 331–348. https://doi.org/10.2478/agriceng-2023-0024

Somu, N., & Kowli, A. (2024). Evaluation of building energy demand forecast models using multi-attribute decision making approach. Energy and Built Environment, 5(3), 480–491. https://doi.org/10.1016/j.enbenv.2023.03.002

Stephenson, H., Roberts, M., Klimkeit, E., & Smith, T. (2022). Uncovering undernutrition in chronic obstructive pulmonary disease: Beyond body mass index. Respiratory Medicine, 205(July), 107026. https://doi.org/10.1016/j.rmed.2022.107026

Tasnim, T. (2018). Determinants of malnutrition in children under five years in developing countries: A systematic review. Indian Journal of Public Health Research and Development, 9(6), 333–338. https://doi.org/10.5958/0976-5506.2018.00574.0

Watkins, B., Odallo, L., & Yu, J. (2024). Artificial intelligence for the practical assessment of nutritional status in emergencies. Expert Systems, December 2023, 1–12. https://doi.org/10.1111/exsy.13550

Xiao, F. (2020). Generalization of Dempster–Shafer theory: A complex mass function. Applied Intelligence, 50(10), 3266–3275. https://doi.org/10.1007/s10489-019-01617-y

Yadav, A. K., Singh, K., Arshad, N. I., Ferrara, M., Ahmadian, A., & Mesalam, Y. I. (2024). MADM-based network selection and handover management in heterogeneous network: A comprehensive comparative analysis. Results in Engineering, 21(February), 101918. https://doi.org/10.1016/j.rineng.2024.101918

Downloads

Published

2024-11-26

How to Cite

Nugroho, S., & Sudibyo , N. A. . (2024). Sistem Pakar Gizi Balita: Kerangka Kerja Konseptual Untuk Deteksi Gizi Buruk. Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 1045–1056. https://doi.org/10.51454/decode.v4i3.810

Issue

Section

Articles