Computer-Aided Diagnosis (CAD) of Stroke in The Brain CT-Scan Images Using Integration of Grey Level Co-Occurrence Matrix (GLCM) Texture Feature Extraction And K-Nearest-Neighbour (KNN) Classification

Authors

  • Casidi Casidi Magister Teknik Informatika Universitas Dian Nuswantoro
  • Abdul Syukur Magister Teknik Informatika Universitas Dian Nuswantoro
  • M. Arief Soeleman Magister Teknik Informatika Universitas Dian Nuswantoro
  • Aris Nurhindarto Magister Teknik Informatika Universitas Dian Nuswantoro

DOI:

https://doi.org/10.51454/decode.v4i3.646

Keywords:

Computer-Aided Diagnosis, CT-Scan, Grey Level Co-Occurrence Matrix, K-Nearest Neighbour, Stroke

Abstract

This study presents an advanced and efficient computer-aided diagnosis (CAD) system for stroke detection using brain CT images, integrating Grey Level Co-Occurrence Matrix (GLCM) feature extraction and K-Nearest Neighbour (KNN) classification. The objective is to enhance stroke detection accuracy and efficiency in clinical settings. A dataset of 400 brain CT images, divided into 300 for training and 100 for testing with equal normal and stroke classes, was used to evaluate performance. The GLCM texture features significantly differentiated between normal and stroke images. The optimized KNN model demonstrated high performance, achieving 99% classification accuracy, 100% sensitivity, 98% specificity, 97% precision, a 99% F1 score, 100% positive predictive value, and 98% negative predictive value. The average computation time per image was 3.2 seconds, indicating feasibility for real-time application. In conclusion, the GLCM-KNN integrated CAD system proves to be an accurate and efficient method for stroke diagnosis on brain CT scans, offering a potential solution for early stroke detection in resource-limited healthcare facilities.

References

Akbari, H., & Sadiq, M. T. (2021). Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Physical and Engineering Sciences in Medicine, 44(1), 157–171. https://doi.org/10.1007/s13246-020-00963-3

Akbarzadeh, M. A., Sanaie, S., Kuchaki Rafsanjani, M., & Hosseini, M.-S. (2021). Role of imaging in early diagnosis of acute ischemic stroke: a literature review. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 57, 1–8. https://doi.org/10.1186/s41983-021-00432-y

Anand, L., Rane, K. P., Bewoor, L. A., Bangare, J. L., Surve, J., Raghunath, M. P., Sankaran, K. S., & Osei, B. (2022). Development of machine learning and medical enabled multimodal for segmentation and classification of brain tumor using MRI images. Computational Intelligence and Neuroscience, 2022(1), 7797094. https://doi.org/10.1155/2022/7797094

Arora, K., Gaekwad, A., Evans, J., O’Brien, W., Ang, T., Garcia-Esperon, C., Blair, C., Edwards, L. S., Chew, B. L. A., & Delcourt, C. (2022). Diagnostic utility of computed tomography perfusion in the telestroke setting. Stroke, 53(9), 2917–2925. https://doi.org/10.1161/STROKEAHA.122.038798

Azman, I. H., Saad, N. M., Abdullah, A. R., Hamzah, R. A., & Samsudin, A. (2023). Automated CAD System for Early Stroke Diagnosis. International Journal of Advanced Computer Science and Applications, 14(8).

Bakheet, S., & Al-Hamadi, A. (2021). Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification. Computers in Biology and Medicine, 137, 104781. https://doi.org/10.1016/j.compbiomed.2021.104781

Chou, P., Ho, B., Chan, Y., Wu, M., Hu, H., & Chao, A. (2018). Delayed diagnosis of atrial fibrillation after first‐ever stroke increases recurrent stroke risk: a 5‐year nationwide follow‐up study. Internal Medicine Journal, 48(6), 661–667. https://doi.org/10.1111/imj.13686

Feigin, V. L., Brainin, M., Norrving, B., Martins, S., Sacco, R. L., Hacke, W., Fisher, M., Pandian, J., & Lindsay, P. (2022). World Stroke Organization (WSO): global stroke fact sheet 2022. International Journal of Stroke, 17(1), 18–29. https://doi.org/10.1177/17474930211065917

Feigin, V. L., Stark, B. A., Johnson, C. O., Roth, G. A., Bisignano, C., Abady, G. G., Abbasifard, M., Abbasi-Kangevari, M., Abd-Allah, F., & Abedi, V. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20(10), 795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

Gudadhe, S., & Thakare, A. (2022). Classification of Intracranial Hemorrhage CT images for Stroke Analysis with Transformed and Image-based GLCM Features. Research Square.

Hasan, & Mardi Hardjianto. (2024). Pengenalan Wajah Secara Realtime Menggunakan Adaboost Viola-Jones dan 2D DWT-PCA dengan Struktur Index KNN-KD Tree. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 154–166. https://doi.org/10.51454/decode.v4i1.300

Iswanto, I., Tulus, T., & Sihombing, P. (2021). Comparison of distance models on K-Nearest Neighbor algorithm in stroke disease detection. Applied Technology and Computing Science Journal, 4(1), 63–68. https://doi.org/10.33086/atcsj.v4i1.2097

Krishnamurthi, R. V, Ikeda, T., & Feigin, V. L. (2020). Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017. Neuroepidemiology, 54(2), 171–179. https://doi.org/10.1159/000506396

Mohammed, B. A., Senan, E. M., Al-Mekhlafi, Z. G., Rassem, T. H., Makbol, N. M., Alanazi, A. A., Almurayziq, T. S., Ghaleb, F. A., & Sallam, A. A. (2022). Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning. Electronics, 11(15), 2460. https://doi.org/10.3390/electronics11152460

Nourin, N., Kundu, P., Saima, S., & Rahman, M. A. (2023). GLCM and HOG Feature-Based Skin Disease Detection Using Artificial Neural Network. Proceedings of International Conference on Information and Communication Technology for Development: ICICTD 2022, 355–364. https://doi.org/10.1007/978-981-19-7528-8_28

Rathnayake, N., & Mampitiya, L. I. (2022). An Efficient Ocular Disease Recognition System Implementation using GLCM and LBP based Multilayer Perception Algorithm. https://doi.org/https://rda.sliit.lk/handle/123456789/2948

Ray, S. (2021). An analysis of computational complexity and accuracy of two supervised machine learning algorithms—K-nearest neighbor and support vector machine. Data Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1, 335–347. https://doi.org/10.1007/978-981-15-5616-6_24

Saraswathi, V., Jamthikar, A. D., & Gupta, D. (2019). CNN and RF based classification of brain tumors in MR neurological images. International Conference on Computer Vision and Image Processing, 123–133. https://doi.org/10.1007/978-981-15-4015-8_11

Satapathy, S. K., Kondaveeti, H. K., & Parmar, D. (2023). An Effective Framework for Predicting Stroke Prediction using Machine Learning Technique. 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–8. https://doi.org/10.1109/ICECCT56650.2023.10179766

Satapathy, S. K., Patel, A., Yadav, P., Thacker, Y., Vaniya, D., & Parmar, D. (2023). Machine Learning Approach for Estimation and Novel Design of Stroke Disease Predictions using Numerical and Categorical Features. 2023 International Conference for Advancement in Technology (ICONAT), 1–6. https://doi.org/10.1109/ICONAT57137.2023.10080722

Sha’Abani, M., Fuad, N., Jamal, N., & Ismail, M. F. (2020). kNN and SVM classification for EEG: a review. InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019, 555–565. https://doi.org/10.1007/978-981-15-2317-5_47

Shen, J., Li, X., Li, Y., & Wu, B. (2017). Comparative accuracy of CT perfusion in diagnosing acute ischemic stroke: A systematic review of 27 trials. PloS One, 12(5), e0176622. https://doi.org/10.1371/journal.pone.0176622

Tri Romadloni, N., & Dwi Septiyanti, N. (2023). Optimasi Feature Selection Pada Komentar Media Sosial Terhadap Peralihan Tv Digital Menggunakan Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 151–160. https://doi.org/10.51454/decode.v3i2.121

Zhang, S., Wu, J., Shi, E., Yu, S., Gao, Y., Li, L. C., Kuo, L. R., Pomeroy, M. J., & Liang, Z. J. (2023). MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification. Computerized Medical Imaging and Graphics, 108, 102257. https://doi.org/10.1016/j.compmedimag.2023.102257

Downloads

Published

2024-10-05

How to Cite

Casidi, C., Syukur, A., Soeleman, M. A. ., & Nurhindarto, A. . (2024). Computer-Aided Diagnosis (CAD) of Stroke in The Brain CT-Scan Images Using Integration of Grey Level Co-Occurrence Matrix (GLCM) Texture Feature Extraction And K-Nearest-Neighbour (KNN) Classification. Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 821–829. https://doi.org/10.51454/decode.v4i3.646

Issue

Section

Articles