Effect of Learning Rate on VGG19 Model Architecture for Human Skin Disease Classification
DOI:
https://doi.org/10.51454/decode.v4i3.576Keywords:
CNN, VGG19, Learning Rate, Skin DiseaseAbstract
The skin is the largest external organ that serves to protect human internal organs and is very sensitive to various diseases, so early detection is very important to reduce the risk and increase the chance of recovery. This study aims to classify skin disease types using CNN algorithm with VGG19 architecture and learning rate adjustment to get a more optimal model, using a dataset from Kaggle consisting of 3,295 images with six classes, including several types of skin diseases and one healthy skin class. The preprocessing process includes dividing the data into training and testing sets, resizing the images to fit the VGG19 architecture, and normalization to scale the pixel values from 0-255 to a range of 0-1. The results show that using a learning rate of 0.00003 produces the best performance with 97.29% accuracy, 97.36% precision, 97.29% recall, and 97.30% F1-score. These findings confirm that the CNN algorithm with VGG19 architecture can classify skin disease types well.
References
Aldhyani, T. H. H., Verma, A., Al-Adhaileh, M. H., & Koundal, D. (2022). Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network. Diagnostics, 12(9). https://doi.org/10.3390/diagnostics12092048
Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021). An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5(April), 100036. https://doi.org/10.1016/j.mlwa.2021.100036
Allugunti, V. R. (2022). A machine learning model for skin disease classification using convolution neural network. International Journal of Computing, Programming and Database Management, 3(1), 141–147. https://doi.org/10.33545/27076636.2022.v3.i1b.53
Anand, V., Gupta, S., Koundal, D., Mahajan, S., Pandit, A. K., & Zaguia, A. (2022). Deep learning based automated diagnosis of skin diseases using dermoscopy. Computers, Materials and Continua, 71(2), 3145–3160. https://doi.org/10.32604/cmc.2022.022788
Baranwal, S. K., Jaiswal, K., Vaibhav, K., Kumar, A., & Srikantaswamy, R. (2020). Performance analysis of Brain Tumour Image Classification using CNN and SVM. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 537–542. https://doi.org/10.1109/ICIRCA48905.2020.9183023
Cellina, M., Cè, M., Khenkina, N., Sinichich, P., Cervelli, M., Poggi, V., Boemi, S., Ierardi, A. M., & Carrafiello, G. (2022). Artificial Intellgence in the Era of Precision Oncological Imaging. Technology in Cancer Research and Treatment, 21(December). https://doi.org/10.1177/15330338221141793
Goceri, E. (2021). Diagnosis of skin diseases in the era of deep learning and mobile technology. Computers in Biology and Medicine, 134(January), 104458. https://doi.org/10.1016/j.compbiomed.2021.104458
Hameed, N., Shabut, A. M., Ghosh, M. K., & Hossain, M. A. (2020). Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Systems with Applications, 141, 112961. https://doi.org/10.1016/j.eswa.2019.112961
Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images. Irbm, 43(4), 290–299. https://doi.org/10.1016/j.irbm.2021.06.003
Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196(2), 105581. https://doi.org/10.1016/j.cmpb.2020.105581
Le, D. N., Parvathy, V. S., Gupta, D., Khanna, A., Rodrigues, J. J. P. C., & Shankar, K. (2021). IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. International Journal of Machine Learning and Cybernetics, 12(11), 3235–3248. https://doi.org/10.1007/s13042-020-01248-7
Möller, D. P. F. (2023). Machine Learning and Deep Learning. Advances in Information Security, 103(January), 347–384. https://doi.org/10.1007/978-3-031-26845-8_8
Muis, A., Sunardi, & Yudhana, A. (2023). Comparison Analysis of Brain Image Classification Based on Thresholding Segmentation With Convolutional Neural Network. Journal of Applied Engineering and Technological Science, 4(2), 664–673. https://doi.org/10.37385/jaets.v4i2.1583
Mustaqeem, & Kwon, S. (2019). A CNN-Assisted Enhanced Audio Signal Processing for Speech Emotion Recognition. Sensors, 20(1), 183. https://doi.org/10.3390/s20010183
Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey, S., & McBratney, A. B. (2019). Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma, 352(June), 251–267. https://doi.org/10.1016/j.geoderma.2019.06.016
Owda, A. Y., & Owda, M. (2022). Early Detection of Skin Disorders and Diseases Using Radiometry. Diagnostics, 12(9), 2117. https://doi.org/10.3390/diagnostics12092117
Putra, N. S., Hutabarat, B. F., & Khaira, U. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1), 82–93. https://doi.org/10.51454/decode.v3i1.123
Saifan, R., & Jubair, F. (2022). Six skin diseases classification using deep convolutional neural network. International Journal of Electrical and Computer Engineering (IJECE), 12(3), 3072. https://doi.org/10.11591/ijece.v12i3.pp3072-3082
Sarıgül, M., Ozyildirim, B. M., & Avci, M. (2019). Differential convolutional neural network. Neural Networks, 116, 279–287. https://doi.org/10.1016/j.neunet.2019.04.025
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Srinivasu, P. N., SivaSai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J. (2021). Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors, 21(8), 2852. https://doi.org/10.3390/s21082852
Tian, Y. (2020). Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm. IEEE Access, 8, 125731–125744. https://doi.org/10.1109/ACCESS.2020.3006097
Tugrul, B., Elfatimi, E., & Eryigit, R. (2022). Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture (Switzerland), 12(8). https://doi.org/10.3390/agriculture12081192
Yunus, M., Muhammad Kunta Biddinika, & Fadlil, A. (2023). Optimasi Algoritma Naïve Bayes Menggunakan Fitur Seleksi Backward Elimination untuk Klasifikasi Prevalensi Stunting. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 278–285. https://doi.org/10.51454/decode.v3i2.188
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Khairul Fathan Habie, Murinto Murinto, Sunardi Sunardi, Arfiani Nur Khusna

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.