Sentiment Analysis of Alfagift Application User Reviews Using Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) Methods

Authors

  • Erika Damayanti Teknik Informatika Universitas Dr. Seotomo
  • Anik Vega Vitianingsih Teknik Informatika Universitas Dr.Soetomo
  • Slamet Kacung Teknik Informatika Universitas Dr. Seotomo
  • Hengki Suhartoyo Teknik Informatika Universitas Dr. Seotomo
  • Anastasia Lidya Maukar Teknik Industri President University

DOI:

https://doi.org/10.51454/decode.v4i2.478

Keywords:

Alfagift Apps, LSTM, Sentiment Analysis, Service Quality, SVM

Abstract

The rapid advancement of mobile apps has emerged as an important aspect of the routine of internet-connected users. In Indonesia, many companies are introducing their apps to improve the quality of service for users, and Alfamart is one of them. However, users have identified many shortcomings in these apps. This feedback is provided by users on the review feature of the Alfagift app on the Google Play Store. This research aims to apply a sentiment analysis approach to identify the application's shortcomings so that developers can understand the aspects that need to be improved to improve the quality of application services. The research stages include data collection, preprocessing, labeling, weighting, classification of LSTM and SVM methods, and performance evaluation using a confusion matrix. The dataset consists of 1000 reviews obtained through web scraping techniques. This research uses the Lexicon-based method to classify the dataset into positive, negative, and neutral categories. The analysis results show that 801 data are classified as positive sentiment, 77 as negative sentiment, and 122 as neutral sentiment. Based on testing, both SVM and LSTM methods show good performance. The best accuracy results were obtained using the SVM method, which amounted to 83.5%. Meanwhile, the LSTM method achieved an accuracy of 82%.

References

Aditiya, P., Enri, U., & Maulana, I. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine. JURIKOM (Jurnal Riset Komputer), 9(4), 1020–1028. https://doi.org/10.30865/jurikom.v9i4.4673 http://dx.doi.org/10.30865/jurikom.v7i1.1927

Adriana, N. M. T. O., Suarjaya, I. M. A. D., & Githa, D. P. (2023). Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 257–267. https://doi.org/10.51454/decode.v3i2.187

Ahmadi, M. I., Apriani, F., Kurniasari, M., Handayani, S., & Gustian, D. (2020). Sentiment Analysis Online Shop on the Play Store Using Method Support Vector Machine (SVM). SEMNASIF (Seminar Nasional Informatika), 1(1), 196–203.

Cahyo, P. W., & Aesyi, U. S. (2023). Perbandingan LSTM dengan Support Vector Machine dan Multinomial Na ve Bayes pada Klasifikasi Kategori Hoax. Jurnal Transformatika, 20(2), 23–29. https://doi.org/10.26623/transformatika.v20i2.5880

Chamid, A. A., Widowati, & Kusumaningrum, R. (2023a). Graph-Based Semi-Supervised Deep Learning for Indonesian Aspect-Based Sentiment Analysis. Big Data and Cognitive Computing, 7(1), 5. https://doi.org/10.3390/bdcc7010005

Chamid, A. A., Widowati, & Kusumaningrum, R. (2023b). Multi-Label Text Classification on Indonesian User Reviews Using Semi-Supervised Graph Neural Networks. ICIC Express Letters, 17(10), 1075–1084. https://doi.org/10.24507/icicel.17.10.1075

Chamid, A. A., Widowati, & Kusumaningrum, R. (2024). Labeling Consistency Test of Multi-Label Data for Aspect and Sentiment Classification Using the Cohen Kappa Method. Ingenierie Des Systemes d’Information, 29(1), 161–167. https://doi.org/10.18280/isi.290118

Daulay, E. D. P., & Asror, I. (2020). Sentimen Analisis pada Ulasan Google Play Store Menggunakan Metode Naïve Bayes. E-Proceeding of Engineering, 7(2), 8400–8410.

Estika, I. D., Darmawan, I., & Pratiwi, O. N. (2021). Analisis Sentimen Ulasan Pengguna Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes (Studi kasus: Bukalapak). E-Proceeding of Engineering, 8(2), 2735–2745.

Fauzi, A. R. (2020). Simulasi Control Smart Home berbasis Mel Frequency Cepstral Coefficients menggunakan metode Support Vector Machine (SVM). Universitas Islam Negeri Sunan Ampel.

Furqan, M., Sriani, S., & Sari, S. M. (2022). Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. Techno.Com, 21(1), 51–60. https://doi.org/10.33633/tc.v21i1.5446

Ginantra, N. L. W. S. R., Yanti, C. P., Prasetya, G. D., Sarasvananda, I. B. G., & Wiguna, I. K. A. G. (2022). Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN. JANAPATI (Jurnal Nasional Pendidikan Teknik Informatika), 11(3), 205–215. https://doi.org/10.23887/janapati.v11i3.49450

Harahap, A. R. A., & Yuliana, Y. (2022). Pengaruh Layanan Alfagift Dan Store Atmosphere Terhadap Keputusan Pembelian Konsumen Pada Alfamart Garu Ii a Medan. Akrab Juara : Jurnal Ilmu-Ilmu Sosial, 7(4), 28. https://doi.org/10.58487/akrabjuara.v7i4.1931

Hertayawan, R. M. P., Raihan, M., & Santoso, I. (2023). Komparasi Algoritma Naive Bayes Dan K-Nearest Neighbor Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Tokopedia. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 17(2), 177–189. https://doi.org/10.47111/jti.v7i2.10071

Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura: Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830

Kristiyanti, D. A., & Hardani, S. (2023). Sentiment Analysis of Public Acceptance of Covid-19 Vaccines Types in Indonesia using Naïve Bayes, Support Vector Machine, and Long Short-Term Memory (LSTM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 722–732. https://doi.org/10.29207/resti.v7i3.4737

Kurnia, W. (2023). Sentimen Analisis Aplikasi E-Commerce Berdasarkan Ulasan Pengguna Menggunakan Algoritma Stochastic Gradient Descent. Jurnal Teknologi Dan Sistem Informasi, 4(2), 138–143.

Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. KOMPUTEK, 3(2), 52–63. https://doi.org/10.24269/jkt.v3i2.270

Melita, R., Amrizal, V., Suseno, H. B., & Dirjam, T. (2018). Penerapan Metode Term Frequency Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Hadits Shahih Bukhari-Muslim). Jurnal Teknik Informatika, 11(2), 149–164. https://doi.org/10.15408/jti.v11i2.8623

Nashirudin, R. (2023). Analisis Sentimen Ulasan Aplikasi Netflix Di Google Play Store Menggunakan Metode Naïve Bayes. Universitas Nahdlatul Ulama Sidoarjo.

Nurlaely, R., Simatupang, D. S., Kamdan, K., & Kharisma, I. L. (2023). Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM). Jurnal CoSciTech (Computer Science and Information Technology), 4(2), 376–384.

Perdana, S. A., Florentin, S. F., & Santoso, A. (2022). AnalisisSegmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 420–427. https://doi.org/10.46984/sebatik.v26i2.1991

Rahman, A., Utami, E., & Sudarmawan, S. (2021). Sentimen Analisis Terhadap Aplikasi pada Google Playstore Menggunakan Algoritma Naïve Bayes dan Algoritma Genetika. Jurnal Komtika (Komputasi Dan Informatika), 5(1), 60–71. https://doi.org/10.31603/komtika.v5i1.5188

Rita, A. (2020). Analisis Sentimen Menggunakan Algoritma Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. http://repository.nusaputra.ac.id/id/eprint/93

Romadhoni, Y., & Holle, K. F. H. (2022). Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2), 118–124. https://doi.org/10.30591/jpit.v7i2.3191

Septian, J. A., Fachrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. INSYST: Journal of Intelligent System and Computation, 1(1), 43–49. https://doi.org/10.52985/insyst.v1i1.36

Styawati, S., Hendrastuty, N., Isnain, A. R., & Rahmadhani, A. Y. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870

Surbakti, A. Q., Hayami, R., & Al Amien, J. (2021). Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 91–97. https://doi.org/10.37859/coscitech.v2i2.2851

Romadloni, N. T., & Septiyanti, N. D. (2023). Optimasi Feature Selection Pada Komentar Media Sosial Terhadap Peralihan Tv Digital Menggunakan Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 151–160. https://doi.org/10.51454/decode.v3i2.121

Widayat, W. (2021). Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning. Jurnal Media Informatika Budidarma, 5(3), 1018–1026. https://doi.org/10.30865/mib.v5i3.3111

Yahyadi, A., & Latifah, F. (2022). Analisis Sentimen Twitter TerhadapKebijakan Ppkm Di Tengah Pandemi Covid-19Menggunakan Mode Lstm. Journal of Information System, Applied, Management, Accounting and Research., 6(2), 464–470.

Yuyun, Hidayah, N., & Sahibu, S. (2021). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. Jurnal Resti, 5(4), 820–826. https://doi.org/10.29207/resti.v5i4.3146

Zusrotun, O. P., Murti, A. C., & Fiati, R. (2022). Analisis Sentimen Terhadap Belajar Online pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes. JANAPATI (Jurnal Nasional Pendidikan Teknik Informatika), 11(3), 310–319. https://doi.org/10.23887/janapati.v11i3.49160

Downloads

Published

2024-06-24

How to Cite

Damayanti, E. ., Vitianingsih, A. V., Kacung, S. ., Suhartoyo, H. ., & Lidya Maukar, A. . (2024). Sentiment Analysis of Alfagift Application User Reviews Using Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) Methods. Decode: Jurnal Pendidikan Teknologi Informasi, 4(2), 509–521. https://doi.org/10.51454/decode.v4i2.478

Issue

Section

Articles

Most read articles by the same author(s)