Sentiment Analysis of Alfagift Application User Reviews Using Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) Methods
DOI:
https://doi.org/10.51454/decode.v4i2.478Keywords:
Alfagift Apps, LSTM, Sentiment Analysis, Service Quality, SVMAbstract
The rapid advancement of mobile apps has emerged as an important aspect of the routine of internet-connected users. In Indonesia, many companies are introducing their apps to improve the quality of service for users, and Alfamart is one of them. However, users have identified many shortcomings in these apps. This feedback is provided by users on the review feature of the Alfagift app on the Google Play Store. This research aims to apply a sentiment analysis approach to identify the application's shortcomings so that developers can understand the aspects that need to be improved to improve the quality of application services. The research stages include data collection, preprocessing, labeling, weighting, classification of LSTM and SVM methods, and performance evaluation using a confusion matrix. The dataset consists of 1000 reviews obtained through web scraping techniques. This research uses the Lexicon-based method to classify the dataset into positive, negative, and neutral categories. The analysis results show that 801 data are classified as positive sentiment, 77 as negative sentiment, and 122 as neutral sentiment. Based on testing, both SVM and LSTM methods show good performance. The best accuracy results were obtained using the SVM method, which amounted to 83.5%. Meanwhile, the LSTM method achieved an accuracy of 82%.
References
Aditiya, P., Enri, U., & Maulana, I. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine. JURIKOM (Jurnal Riset Komputer), 9(4), 1020–1028. https://doi.org/10.30865/jurikom.v9i4.4673 http://dx.doi.org/10.30865/jurikom.v7i1.1927
Adriana, N. M. T. O., Suarjaya, I. M. A. D., & Githa, D. P. (2023). Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 257–267. https://doi.org/10.51454/decode.v3i2.187
Ahmadi, M. I., Apriani, F., Kurniasari, M., Handayani, S., & Gustian, D. (2020). Sentiment Analysis Online Shop on the Play Store Using Method Support Vector Machine (SVM). SEMNASIF (Seminar Nasional Informatika), 1(1), 196–203.
Cahyo, P. W., & Aesyi, U. S. (2023). Perbandingan LSTM dengan Support Vector Machine dan Multinomial Na ve Bayes pada Klasifikasi Kategori Hoax. Jurnal Transformatika, 20(2), 23–29. https://doi.org/10.26623/transformatika.v20i2.5880
Chamid, A. A., Widowati, & Kusumaningrum, R. (2023a). Graph-Based Semi-Supervised Deep Learning for Indonesian Aspect-Based Sentiment Analysis. Big Data and Cognitive Computing, 7(1), 5. https://doi.org/10.3390/bdcc7010005
Chamid, A. A., Widowati, & Kusumaningrum, R. (2023b). Multi-Label Text Classification on Indonesian User Reviews Using Semi-Supervised Graph Neural Networks. ICIC Express Letters, 17(10), 1075–1084. https://doi.org/10.24507/icicel.17.10.1075
Chamid, A. A., Widowati, & Kusumaningrum, R. (2024). Labeling Consistency Test of Multi-Label Data for Aspect and Sentiment Classification Using the Cohen Kappa Method. Ingenierie Des Systemes d’Information, 29(1), 161–167. https://doi.org/10.18280/isi.290118
Daulay, E. D. P., & Asror, I. (2020). Sentimen Analisis pada Ulasan Google Play Store Menggunakan Metode Naïve Bayes. E-Proceeding of Engineering, 7(2), 8400–8410.
Estika, I. D., Darmawan, I., & Pratiwi, O. N. (2021). Analisis Sentimen Ulasan Pengguna Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes (Studi kasus: Bukalapak). E-Proceeding of Engineering, 8(2), 2735–2745.
Fauzi, A. R. (2020). Simulasi Control Smart Home berbasis Mel Frequency Cepstral Coefficients menggunakan metode Support Vector Machine (SVM). Universitas Islam Negeri Sunan Ampel.
Furqan, M., Sriani, S., & Sari, S. M. (2022). Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. Techno.Com, 21(1), 51–60. https://doi.org/10.33633/tc.v21i1.5446
Ginantra, N. L. W. S. R., Yanti, C. P., Prasetya, G. D., Sarasvananda, I. B. G., & Wiguna, I. K. A. G. (2022). Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN. JANAPATI (Jurnal Nasional Pendidikan Teknik Informatika), 11(3), 205–215. https://doi.org/10.23887/janapati.v11i3.49450
Harahap, A. R. A., & Yuliana, Y. (2022). Pengaruh Layanan Alfagift Dan Store Atmosphere Terhadap Keputusan Pembelian Konsumen Pada Alfamart Garu Ii a Medan. Akrab Juara : Jurnal Ilmu-Ilmu Sosial, 7(4), 28. https://doi.org/10.58487/akrabjuara.v7i4.1931
Hertayawan, R. M. P., Raihan, M., & Santoso, I. (2023). Komparasi Algoritma Naive Bayes Dan K-Nearest Neighbor Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Tokopedia. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 17(2), 177–189. https://doi.org/10.47111/jti.v7i2.10071
Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura: Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830
Kristiyanti, D. A., & Hardani, S. (2023). Sentiment Analysis of Public Acceptance of Covid-19 Vaccines Types in Indonesia using Naïve Bayes, Support Vector Machine, and Long Short-Term Memory (LSTM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 722–732. https://doi.org/10.29207/resti.v7i3.4737
Kurnia, W. (2023). Sentimen Analisis Aplikasi E-Commerce Berdasarkan Ulasan Pengguna Menggunakan Algoritma Stochastic Gradient Descent. Jurnal Teknologi Dan Sistem Informasi, 4(2), 138–143.
Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. KOMPUTEK, 3(2), 52–63. https://doi.org/10.24269/jkt.v3i2.270
Melita, R., Amrizal, V., Suseno, H. B., & Dirjam, T. (2018). Penerapan Metode Term Frequency Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Hadits Shahih Bukhari-Muslim). Jurnal Teknik Informatika, 11(2), 149–164. https://doi.org/10.15408/jti.v11i2.8623
Nashirudin, R. (2023). Analisis Sentimen Ulasan Aplikasi Netflix Di Google Play Store Menggunakan Metode Naïve Bayes. Universitas Nahdlatul Ulama Sidoarjo.
Nurlaely, R., Simatupang, D. S., Kamdan, K., & Kharisma, I. L. (2023). Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM). Jurnal CoSciTech (Computer Science and Information Technology), 4(2), 376–384.
Perdana, S. A., Florentin, S. F., & Santoso, A. (2022). AnalisisSegmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 420–427. https://doi.org/10.46984/sebatik.v26i2.1991
Rahman, A., Utami, E., & Sudarmawan, S. (2021). Sentimen Analisis Terhadap Aplikasi pada Google Playstore Menggunakan Algoritma Naïve Bayes dan Algoritma Genetika. Jurnal Komtika (Komputasi Dan Informatika), 5(1), 60–71. https://doi.org/10.31603/komtika.v5i1.5188
Rita, A. (2020). Analisis Sentimen Menggunakan Algoritma Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. http://repository.nusaputra.ac.id/id/eprint/93
Romadhoni, Y., & Holle, K. F. H. (2022). Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2), 118–124. https://doi.org/10.30591/jpit.v7i2.3191
Septian, J. A., Fachrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. INSYST: Journal of Intelligent System and Computation, 1(1), 43–49. https://doi.org/10.52985/insyst.v1i1.36
Styawati, S., Hendrastuty, N., Isnain, A. R., & Rahmadhani, A. Y. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870
Surbakti, A. Q., Hayami, R., & Al Amien, J. (2021). Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 91–97. https://doi.org/10.37859/coscitech.v2i2.2851
Romadloni, N. T., & Septiyanti, N. D. (2023). Optimasi Feature Selection Pada Komentar Media Sosial Terhadap Peralihan Tv Digital Menggunakan Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 151–160. https://doi.org/10.51454/decode.v3i2.121
Widayat, W. (2021). Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning. Jurnal Media Informatika Budidarma, 5(3), 1018–1026. https://doi.org/10.30865/mib.v5i3.3111
Yahyadi, A., & Latifah, F. (2022). Analisis Sentimen Twitter TerhadapKebijakan Ppkm Di Tengah Pandemi Covid-19Menggunakan Mode Lstm. Journal of Information System, Applied, Management, Accounting and Research., 6(2), 464–470.
Yuyun, Hidayah, N., & Sahibu, S. (2021). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. Jurnal Resti, 5(4), 820–826. https://doi.org/10.29207/resti.v5i4.3146
Zusrotun, O. P., Murti, A. C., & Fiati, R. (2022). Analisis Sentimen Terhadap Belajar Online pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes. JANAPATI (Jurnal Nasional Pendidikan Teknik Informatika), 11(3), 310–319. https://doi.org/10.23887/janapati.v11i3.49160
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Erika Damayanti, Anik Vega Vitianingsih, Slamet Kacung, Hengki Suhartoyo, Anastasia Lidya Maukar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









