Klasifikasi Rontgen Citra Paru untuk COVID-19 Menggunakan Convolutional Neural Network Berbasis Arsitektur EfficientNetV2
DOI:
https://doi.org/10.51454/decode.v4i1.349Keywords:
Convulotional Neural Network, Covid-19, EfficientNetV2, Rontgen DadaAbstract
Pada 30 Januari 2020, WHO mengumumkan wabah COVID-19 sebagai Darurat Kesehatan Masyarakat Internasional, memicu kebutuhan akan pendekatan cepat dalam diagnosis dan penilaian penyakit paru-paru. Meskipun pengamatan citra rontgen paru-paru menjadi metode yang menjanjikan, sistem penilaian manual memakan waktu, mendorong perlunya integrasi teknologi. Dalam konteks ini, perkembangan pesat visi komputer dan pembelajaran mesin memungkinkan pengembangan perangkat lunak untuk mengklasifikasikan citra rontgen secara efisien. Sejumlah penelitian telah mencatat keberhasilan berbagai arsitektur Convolutional Neural Networks (CNN) dalam pengklasifikasian penyakit paru-paru dengan hasil akurasi yang mengesankan. Studi ini memfokuskan pada eksplorasi arsitektur CNN, khususnya EfficientNetV2, dalam mengklasifikasikan citra rontgen paru ke dalam empat kelas: COVID-19, opasitas paru, Normal, dan pneumonia viral. Pada penelitian ini, proses pelatihan model menggunakan dataset COVID-19 Radiography dengan menerapkan teknik pensampellan ulang dan augmentasi beserta skema pembagian data sebagai teknik pemrosesan data, penggunaan metriks evaluasi seperti akurasi, perolehan, presisi, dan F1 juga dilakukan untuk mendapatkan model klasifikasi yang paling optimal. Hasil dari penelitian ini menunjukkan nilai metrics tertinggi yang didapatkan pada 97,05% untuk akurasi, 97,38% untuk presisi, 96,88% untuk perolehan, dan 97,13% untuk F1.
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2005). TensorFlow: A System for Large-Scale Machine Learning. USENIX Association.
Albawi, S., Mohammed, T. A., & Al-zawi, S. (2018). Understanding of a Convolutional Neural Network. 2017 International Conference on Engineering and Technology (ICET). https://doi.org/10.1109/ICEngTechnol.2017.8308186
Antonio Gulli, & Sujit Pal. (2017). Deep learning with Keras. Packt Publishing Ltd.
Arriani, A., Pradityas, H., Sofiani, L., Iwisara, N. G., Anandita, Y., Utami, E. S., Rahardja, M., Yenuarizki, & Dewi, N. (2020, Juli). The Community’s Perception Of Covid-19. Suara Komunitas, 1-27.
Bock, S., Goppold, J., & Weiß, M. (2018). An improvement of the convergence proof of the ADAM-Optimizer. http://arxiv.org/abs/1804.10587
Chowdhury, M. E. H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. Bin, Islam, K. R., Khan, M. S., Iqbal, A., Emadi, N. Al, Reaz, M. B. I., & Islam, M. T. (2020). Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access, 8, 132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287
Jia, G., Lam, H. K., & Xu, Y. (2021). Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method. Computers in Biology and Medicine, 134. https://doi.org/10.1016/j.compbiomed.2021.104425
Khaldy, M. Al. (2018). Resampling Imbalanced Class and the Effectiveness of Feature Selection Methods for Heart Failure Dataset. International Robotics & Automation Journal, 4(1). https://doi.org/10.15406/iratj.2018.04.00090
Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980
Lee, H., & Song, J. (2019). Introduction to convolutional neural network using Keras; An understanding from a statistician. Communications for Statistical Applications and Methods, 26(6), 591–610. https://doi.org/10.29220/CSAM.2019.26.6.591
Luthfi, M. I., & Septiyanti, N. D. (2023). Design Thinking Untuk Analisis Masalah Pembelajaran Daring Pada Masa Pandemi Covid-19 Di Indonesia. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 193–204. https://doi.org/10.51454/decode.v3i2.146
Ma, W., & Lu, J. (2017). An Equivalence of Fully Connected Layer and Convolutional Layer. http://arxiv.org/abs/1712.01252
Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Rajendra Acharya, U. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121. https://doi.org/10.1016/j.compbiomed.2020.103792
Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. http://arxiv.org/abs/1712.04621
Powers, D. M. W., & Ailab. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology 2, 37–63. https://doi.org/https://doi.org/10.48550/arXiv.2010.16061
Putra, N. S., Hutabarat, B. F., & Khaira, U. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1), 82–93. https://doi.org/10.51454/decode.v3i1.123
Rahman, T., Dr. Chowdhury, M., & Khandarkar, A. (2021). COVID-19 Radiography (COVID-19 Chest X-ray Database) Dataset. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Abul Kashem, S. Bin, Islam, M. T., Al Maadeed, S., Zughaier, S. M., Khan, M. S., & Chowdhury, M. E. H. (2021). Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132. https://doi.org/10.1016/j.compbiomed.2021.104319
Reddi, S. J., Kale, S., & Kumar, S. (2019). ON THE CONVERGENCE OF ADAM AND BEYOND. https://doi.org/https://doi.org/10.48550/arXiv.1904.09237
Rousan, L. A., Elobeid, E., Karrar, M., & Khader, Y. (2020). Chest x-ray findings and temporal lung changes in patients with COVID-19 pneumonia. BMC Pulmonary Medicine, 20(1). https://doi.org/10.1186/s12890-020-01286-5
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). Dalam Indian Journal of Pediatrics (Vol. 87, Nomor 4, hlm. 281–286). Springer. https://doi.org/10.1007/s12098-020-03263-6
Sutanty, E., & Kusuma Astuti, D. (2023). Penerapan Model Arsitektur Vgg16 Untuk Klasifikasi Jenis Sampah. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 407-419. https://doi.org/10.51454/decode.v3i2.331
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. International Conference on Machine Learning. https://doi.org/10.48550/arXiv.1905.11946
Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.2104.00298
Warren, M. A., Zhao, Z., Koyama, T., Bastarache, J. A., Shaver, C. M., Semler, M. W., Rice, T. W., Matthay, M. A., Calfee, C. S., & Ware, L. B. (2018). Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax, 73(9), 840–846. https://doi.org/10.1136/thoraxjnl-2017-211280
Yadav, S., Kaur Sandhu, J., Pathak, Y., Jadhav Babasaheb, S., Jadhav, S., & Yadav Assistant Professor, S. (2020). Chest X-ray scanning based detection of COVID-19 using deepconvolutional neural network Chest X-ray scanning based detection of COVID-19 using deep convolutional neural network. https://doi.org/10.21203/rs.3.rs-58833/v1
Yadav, S. S., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0276-2
Yasin, R., & Gouda, W. (2020). Chest X-ray findings monitoring COVID-19 disease course and severity. Egyptian Journal of Radiology and Nuclear Medicine, 51(1). https://doi.org/10.1186/s43055-020-00296-x
Zhang, H., Zhang, L., & Jiang, Y. (2019). Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication Systems. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/WCSP.2019.8927876
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hutomo Try Wibowo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









