Market Basket Analysis Using Apriori Algorithm to Find Effective Fiscal Policy Mix with R Programming

Authors

  • Isnen Hadi Al Ghozali Ilmu Komputer Universitas Budi Luhur
  • Arief Wibowo Sistem Informasi Universitas Budi Luhur

DOI:

https://doi.org/10.51454/decode.v3i2.180

Keywords:

apriori algorithm, association rules, fiscal policy, market basket analysis

Abstract

Fiscal policy drives a country's economy and is the most effectivepolicy to restore a country's economy. When a recession occurs, the fiscal policy helps a country increase aggregate demand in the market for goods and services. This study proposes a fiscal policy mix that can be implemented based on historical data. So this research focuses on  using  association rules to assist decision-makers (regulators in  adopting  appropriate  fiscal  policies  in  the global VUCA (Volatility, Uncertainty, Complexity, Ambiguity) era. Therefore, an experimental research approach was used in this study to produce the best association rules. The research was carried out in six stages to obtain conclusions, namely problem identification in the research sample and literature review related to apriori algorithms, data collection, data pre-processing, parameter determination, research findings building a priori algorithms, and knowledge extraction formed from a priori algorithms. Based on the experimental results using the a priori algorithm, 657 rules were obtained with a minimum variation of two to six itemsets. Rule 6 produces an average value of the budget performance of 90.65. Rule 6 also says that the performance value of the budget can  be  increased  by  spreading  out  funding  sources  and  ensuring  that  operational  spending  is  as  efficient  as possible.

References

Chandra, J., & Dewi, K. R. (2019). Implementation of Data Mining Sales of Milk Using Apriori Algorithm Method. IOP Conference Series: Materials Science and Engineering, 662(2), 1-7. https://doi.org/10.1088/1757-899X/662/2/022077

Chee, C. H., Jaafar, J., Aziz, I. A., Hasan, M. H., & Yeoh, W. (2019). Algorithms for frequent itemset mining: a literature review. Artificial Intelligence Review, 52(4), 2603-2621. https://doi.org/10.1007/s10462-018-9629-z

Chenic, A. Ștefania, Ene, I. A., Hrebenciuc, A., Virjan, D., & Burlacu, A. (2022). Measuring the Impact of Fiscal Policy Shocks in Romania. Economic Computation and Economic Cybernetics Studies and Research, 56(3), 119-134. https://doi.org/10.24818/18423264/56.3.22.08

Dorya, A., Villalba, D. K., Chikersal, P., Dutcher, J. M., Tumminia, M., Liu, X., … Creswell, J. D. (2019). Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data. JMIR Mhealth Uhealth., 7(7), 1-7. https://doi.org/10.2196/13209

Fathurrahman, M., Pratama, A. R., & Al-mudzakir, T. (2023). Perbandingan Algoritma Apriori Dan Fp Growth Terhadap Market Basket Analysis Pada Data Penjualan Bakery. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 4(2), 266-274.

Fitriah, F. Riadi, I., & Herman, H. (2023). Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1), 118-129. https://doi.org/10.51454/decode.v3i1.132

Gao, M., Ma, L., Liu, H., Zhang, Z., Ning, Z., & Xu, J. (2020). Malicious network traffic detection based on deep neural networks and association analysis. Sensors (Switzerland), 20(5), 1-14. https://doi.org/10.3390/s20051452

Hakim, M. J., & Akbar, Y. (2018). Market Basket Analysis Menggunakan Algoritma Apriori Berbasis Bahasa R (Studi Kasus Transretail Indonesia). Jurnal CKI On SPOT, 11(2), 173-180.

Halim, K. K., Halim, S., & Felecia. (2019). Business intelligence for designing restaurant marketing strategy: A case study. Procedia Computer Science, 161, 615-622. https://doi.org/10.1016/j.procs.2019.11.164

Hermina, C. I., Balajishankar, A., & Gopalakrishnan. (2022). Market basket analysis for a supermarket. International Journal of Management, Technology And Engineering, (11), 106-113.

Hikmawati, E., Maulidevi, N. U., & Surendro, K. (2021). Minimum threshold determination method based on dataset characteristics in association rule mining. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00538-3

Idris, A. I., Sampetoding, E. A. M., Ardhana, V. Y. P., Maritsa, I., Sakri, A., Ruslan, H., & Manapa, E. S. (2022). Comparison of Apriori, Apriori-TID and FP-Growth Algorithms in Market Basket Analysis at Grocery Stores. The IJICS (International Journal of Informatics and Computer Science), 6(2), 107. https://doi.org/10.30865/ijics.v6i2.4535

Kanakaris, N., Karacapilidis, N., & Lazanas, A. (2019). On the advancement of project management through a flexible integration of machine learning and operations research tools. ICORES 2019 - Proceedings of the 8th International Conference on Operations Research and Enterprise Systems, (1), 362-369. https://doi.org/10.5220/0007387103620369

Kurnia, Y., Isharianto, Y., Giap, Y. C., Hermawan, A., & Riki. (2019). Study of application of data mining market basket analysis for knowing sales pattern (association of items) at the O! Fish restaurant using apriori algorithm. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012047

Mahboob Alam, T., Iqbal, M. A., Ali, Y., Wahab, A., Ijaz, S., Imtiaz Baig, T., … Abbas, Z. (2019). A model for early prediction of diabetes. Informatics in Medicine Unlocked, 16(1), 1-6. https://doi.org/10.1016/j.imu.2019.100204

Mangara Wainana, S., Njuguna Karomo, J., Kyalo, R., & Mutai, N. (2020). Using Data Mining Techniques and R Software to Analyze Crime Data in Kenya. International Journal of Data Science and Analysis, 6(1), 20. https://doi.org/10.11648/j.ijdsa.20200601.13

Mirmozaffari, M. (2019). Eco-Efficiency Evaluation in Two-Stage Network Structure: Case Study: Cement Companies. Iranian Journal of Optimization, 11(2), 125.

Muhafidin, D. (2020). The role of fiscal policy and monetary policy in environmental degradation in Indonesia. International Journal of Energy Economics and Policy, 10(3), 504-510. https://doi.org/10.32479/ijeep.9586

Nuraeni, F., Tresnawati, D., Handoko Agustin, Y., & Fauzi, G. (2022). Optimization of Market Basket Analysis Using Centroid-Based Clustering Algorithm and Fp-Growth Algorithm. Jurnal Teknik Informatika (Jutif), 3(6), 1581-1590. https://doi.org/10.20884/1.jutif.2022.3.6.399

Panjaitan, S., Sulindawaty, Amin, M., Lindawati, S., Watrianthos, R., Sihotang, H. T., & Sinaga, B. (2019). Implementation of Apriori Algorithm for Analysis of Consumer Purchase Patterns. Journal of Physics: Conference Series, 1255(1), 1-18. https://doi.org/10.1088/1742-6596/1255/1/012057

Qisman, M., Rosadi, R., & Abdullah, A. S. (2021). Market basket analysis using apriori algorithm to find consumer patterns in buying goods through transaction data (case study of Mizan computer retail stores). Journal of Physics: Conference Series, 1722(1), 1–13. https://doi.org/10.1088/1742-6596/1722/1/012020

Ridzuan, M. R., & Abd Rahman, N. A. S. (2021). The Deployment of Fiscal Policy in Several ASEAN Countries in Dampening the Impact of COVID-19. Journal of Emerging Economies and Islamic Research, 9(1), 16. https://doi.org/10.24191/jeeir.v9i1.9156

Rizaldi, D., & Adnan, A. (2021). Market Basket Analysis Menggunakan Algoritma Apriori: Kasus Transaksi 212 Mart Soebrantas Pekanbaru. Jurnal Statistika Dan Aplikasinya, 5(1), 31-40. https://doi.org/10.21009/jsa.05103

Santoso, M. H. (2021). Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom. Brilliance: Research of Artificial Intelligence, 1(2), 54-66. https://doi.org/10.47709/brilliance.v1i2.1228

Suhendra, N., & Syathi, P. B. (2019). Fiscal Shocks and Macroeconomic Variables in Indonesia. East African Scholars Journal of Economics, Business and Management, 2(12), 758-765. https://doi.org/10.36349/easjebm.2019.v02i12.009

Suryadi, A., Cattleya, M., & Anissa, P. (2022). Analysis of Data Mining at Supermarket X in Surabaya Using Market Basket Analysis to Determine Consumer Buying Patterns. Nusantara Science and Technology Proceedings, 28-32. https://doi.org/10.11594/nstp.2022.2705

Sussolaikah, K. (2021). Market Basket Analysis for Determination of Consumer Behavior at XYZ Stores Using R Programming. Advance Sustainable Science, Engineering and Technology, 3(2), 1–11. https://doi.org/10.26877/asset.v3i2.8547

Syahrini, I., Masbar, R., Aliasuddin, A., Munzir, S., & Hazmi, Y. (2021). The Application of Optimal Control Through Fiscal Policy on Indonesian Economy. Journal of Asian Finance, Economics and Business, 8(3), 741-750. https://doi.org/10.13106/jafeb.2021.vol8.no3.0741

Utama, C. (2020). The effect of twin-shock on monetary and fiscal policies in indonesia. Jurnal Ekonomi Malaysia, 54(2), 137-147. https://doi.org/10.17576/JEM-2020-5402-12

Yang, A., Zhang, W., Wang, J., Yang, K., Han, Y., & Zhang, L. (2020). Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA. Frontiers in Bioengineering and Biotechnology, 8(September), 1-13. https://doi.org/10.3389/fbioe.2020.01032

Downloads

Published

2023-05-26

How to Cite

Isnen Hadi Al Ghozali, & Arief Wibowo. (2023). Market Basket Analysis Using Apriori Algorithm to Find Effective Fiscal Policy Mix with R Programming. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 216–228. https://doi.org/10.51454/decode.v3i2.180

Issue

Section

Articles