Identifikasi Klaster UMKM di Kota Bima menuju Indonesia Emas 2045 dengan Metode Support Vector Machine
DOI:
https://doi.org/10.51454/decode.v5i3.1359Keywords:
Artificial Intelligence, Data Mining, Machine Learning, Transformasi Digital, UMKMAbstract
UMKM merupakan badan usaha yang berperan vital dalam perekonomian daerah, termasuk di Kota Bima dengan jumlah 23.936 unit pada tahun 2022. Mayoritas terdiri dari usaha mikro dengan Kecamatan Raba dan Rasanae Barat sebagai wilayah dengan konsentrasi tertinggi. Penelitian ini bertujuan mengembangkan model klasterisasi UMKM berbasis bidang usaha menggunakan pendekatan machine learning dengan kombinasi algoritma Fuzzy C-Means (FCM) dan Support Vector Machine (SVM). Data penelitian berjumlah 5.176 unit UMKM yang diperoleh dari Dinas Koperasi dan UKM, survei lapangan, serta dokumen administratif. Tahapan penelitian mencakup preprocessing data (penanganan missing values, feature selection, cleaning, normalisasi, dan reduksi dimensi), klasterisasi dengan FCM, klasifikasi menggunakan SVM, serta evaluasi model. Penentuan jumlah klaster optimum dilakukan dengan Silhouette Index dan Davies-Bouldin Index, menghasilkan tiga klaster utama: UMKM tradisional dengan investasi rendah dan digitalisasi minim, UMKM transisi dengan investasi lebih tinggi, serta UMKM digital progresif dengan adopsi teknologi dominan. Hasil evaluasi menunjukkan bahwa SVM mampu mengklasifikasikan klaster dengan akurasi 100% serta precision, recall, dan f1-score sempurna. Fitur Jumlah Investasi, TKI, dan Proxy Digitalisasi terbukti representatif dalam membedakan karakteristik UMKM. Temuan ini menunjukkan bahwa kombinasi FCM–SVM efektif untuk segmentasi UMKM serta dapat menjadi dasar kebijakan pengembangan yang tepat sasaran, mulai dari penguatan usaha tradisional hingga akselerasi transformasi digital.
References
Agustiono, W., & Darmawan, A. K. (2023). E-Marketplace Selection for Indonesian MSMEs: A Sentiment Analysis Approach Combining Lexicon-Based and Support Vector Machine. Proceeding - IEEE 9th Information Technology International Seminar, ITIS 2023. https://doi.org/10.1109/ITIS59651.2023.10420382
Ashari, I. F., Nugroho, E. D., Baraku, R., Yanda, I. N., & Liwardana, R. (2023). Analysis Of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, And Rand-Index Evaluation On K-Means Algorithm For Classifying Flood-Affected Areas In Jakarta. Journal of Applied Informatics and Computing, 7(1), 89–97. https://doi.org/10.30871/jaic.v7i1.4947
Beynon, M., Pickernell, D., & Jones, P. (2025). Entrepreneurial Activity In The International Trade In Cultural Goods: A Fuzzy Clustering Analysis. Technological Forecasting and Social Change, 210(1), 123914. https://doi.org/10.1016/j.techfore.2024.123914
Bhavani, A., & Santhosh Kumar, B. (2021). A Review of State Art of Text Classification Algorithms. International Conference on Computing Methodologies and Communication, 1493-1499. https://doi.org/10.1109/ICCMC51019.2021.9418262
Boubaker, S., Le, T. D. Q., Ngo, T., & Manita, R. (2025). Predicting The Performance Of Msmes: A Hybrid DEA-Machine Learning Approach. Annals of Operations Research, 350(2), 555–577. https://doi.org/10.1007/s10479-023-05230-8
Chiu, M. C., Huang, Y. J., & Wei, C. J. (2024). Enhancing Smes Digital Transformation Through Machine Learning: A Framework For Adaptive Quality Prediction. Journal of Industrial Information Integration, 41(1), 100666. https://doi.org/10.1016/j.jii.2024.100666
Damayanti, D. K. D., & Jakfar, M. (2023). Klasifikasi Status Stunting Balita Menggunakan Algoritma Fuzzy C-Means (Studi Kasus Posyandu Rw 01 Kelurahan Jepara Surabaya). MATHunesa: Jurnal Ilmiah Matematika, 11(3), 533–542. https://doi.org/10.26740/mathunesa.v11n03.p524-533
Gafar, G. A., & Wang, G. (2023). Implementation Of Machine Learning For Sharia Financing Scoring In Indonesian MSME Sectors. Journal Of Social Science Research, 3(5), 814–830.
Hafsari, R., & Nurcahyo, G. W. (2021). Penerapan Fuzzy C-Means Pada Teknologi Adopsi Usaha Mikro Kecil dan Menengah. Jurnal KomtekInfo, 8(3),183–188. https://doi.org/10.35134/komtekinfo.v8i3.165
Herdiyeni, Y., Juanda, B., Zhafira, N., Anggraeni, L., & Probokawuryan, M. (2025). Machine-Learning-Based Assessment and Prediction of Digital Transformation Performance for MSMEs in Indonesia. International Journal of Information Technology and Decision Making, 1-29. https://doi.org/10.1142/S0219622025500415
Jonathan, J. K., Herwindiati, D. E., Ferdinand, K., & Jong, F. (2024). Implementation of Fuzzy C-Means for Clustering MSMEs in Jambi Province. International Conference on Informatics and Computing, 1-16. https://doi.org/10.1109/ICIC64337.2024.10956968
Kumar, P., Sumithra, M. G., & Saranya, N. (2021). Particle Swarm Optimization (PSO) With Fuzzy C Means (PSO-FCM)–Based Segmentation And Machine Learning Classifier For Leaf Diseases Prediction. Concurrency and Computation: Practice and Experience, 33(3). https://doi.org/10.1002/cpe.5312
Maharani, S., Noerlina, & Nadira. (2024). A Study of MSMEs Business Sustainability Strategies: Transforming Towards Industry. International Conference on Informatics, Multimedia, Cyber and Information System, 449–453. https://doi.org/10.1109/ICIMCIS63449.2024.10957198
Mishra, A., Tiwari, M., Mishra, J., & Hung, B. T. (2023). Brain Tumor Segmentation of MR Images Using SVM and Fuzzy Classifier in Machine Learning. Springer Nature Link, 81–112. https://doi.org/10.1007/978-981-99-1949-9_5
Muthiah, H., & Hamidah, N. K. (2025). Integrasi Machine Learning Untuk Optimalisasi Prediksi Permintaan Produk Pada UMKM Kuliner. Jurnal PenKoMi : Kajian Pendidikan Dan Ekonomi, 8(1), 229–233. https://doi.org/10.33627/pk.v8i1.2945
Nararto, E. K., Budiwati, S. D., & Sari, S. K. (2024). Opinion Classification on MSME Social Media Comments using Support Vector Machine and Random Forest Models. International Conference of Science and Information Technology in Smart Administration, 165–170. https://doi.org/10.1109/ICSINTESA62455.2024.10748163
Ouyang, Y., & Sun, Y. (2024). Exploration and Trend Analysis of Corporate Financial Statement Data: A Fuzzy Clustering Algorithm. ACM International Conference Proceeding Series, 230–236. https://doi.org/10.1145/3662739.3672332
Patil, K. P., Pramod, D., & Bharathi, S. V. (2023). MSMEs Readiness for Adopting Artificial Intelligence and Machine Learning. International Conference on Advanced Computing Technologies and Applications, 1-6. https://doi.org/10.1109/ICACTA58201.2023.10392396
Putri, R. A., Rustam, Z., Pandelaki, J., & Salmi, N. (2021). Kernel Based Comparison between Fuzzy C-Means and Support Vector Machine for Sinusitis Classification. Journal of Physics: Conference Series, 1752(1). https://doi.org/10.1088/1742-6596/1752/1/012031
Putri, R. A., Mauritsius, T., Ananda, B., & Jayadi, R. (2024). Optimizing Customer Retention in Urban Laundry Services: A Comparative Analysis of Machine Learning Algorithms in Jakarta’s MSME Sector. International Conference on Information Management and Technology, ICIMTech 2024, 630–635. https://doi.org/10.1109/ICIMTech63123.2024.10780922
Sabale, D. B., Kaswan, M. S., & Rathi, R. (2024). Development Of Circular Economy Model Using Industry 4.0’s Machine Learning Techniques To Improve Performance Metrics Of MSMEs. International Journal on Interactive Design and Manufacturing, 1-19. https://doi.org/10.1007/s12008-024-01782-6
Sheth, V., Tripathi, U., & Sharma, A. (2022). A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia Computer Science, 215, 422–431. https://doi.org/10.1016/j.procs.2022.12.044
Tahyudin, I., Firmansyah, G., Ivansyah, A. G., Ma’arifah, W., & Lestari, L. (2022). Comparison of K-Means Algorithms and Fuzzy C-Means Algorithms for Clustering Customers Dataset. APICS 2022 - 2022 1st International Conference on Smart Technology, Applied Informatics, and Engineering, Proceedings, 211–216. https://doi.org/10.1109/APICS56469.2022.9918726
Vásquez, J., Aguirre, S., Puertas, E., Bruno, G., Priarone, P. C., & Settineri, L. (2021). A Sustainability Maturity Model For Micro, Small And Medium-Sized Enterprises (Msmes) Based On A Data Analytics Evaluation Approach. Journal of Cleaner Production, 311, 127692. https://doi.org/10.1016/j.jclepro.2021.127692
Wibowo, R. A., Budiwati, S. D., & Sari, S. K. (2024). Analyzing Instagram User Sentiment Toward MSME Using Naive Bayes and Logistic Regression. 2024 International Conference on Data Science and Its Applications, ICoDSA 2024, 561–566. https://doi.org/10.1109/ICoDSA62899.2024.10651957
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Khairunnas, Alya Masitha, Nurul Huda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









