Prediksi Jumlah Kunjungan Wisatawan Nusantara ke Sulawesi Tenggara Menggunakan Pendekatan Machine Learning

Authors

  • Kariyamin Teknologi Informasi Institut Teknologi dan Bisnis Muhammadiyah Wakatobi
  • Sry Teknologi Informasi Institut Teknologi dan Bisnis Muhammadiyah Wakatobi
  • Egi Dio Bagus Sudewo Sistem Informasi Universitas Royal
  • La Ode Alyandi Teknologi Informasi Institut Teknologi dan Bisnis Muhammadiyah Wakatobi

DOI:

https://doi.org/10.51454/decode.v5i3.1352

Keywords:

LSTM, Peramalan Pariwisata, Prediksi Derer Waktu, Sulawesi Tenggara, SVR

Abstract

Prediksi jumlah kunjungan wisatawan merupakan aspek penting dalam perencanaan dan pengambilan kebijakan di sektor pariwisata. Penelitian ini bertujuan untuk menganalisis perbandingan kinerja model Support Vector Regression (SVR) dan Long Short-Term Memory (LSTM) dalam memprediksi jumlah kunjungan wisatawan nusantara ke Provinsi Sulawesi Tenggara. Data yang digunakan diperoleh dari Badan Pusat Statistik (BPS) Provinsi Sulawesi Tenggara periode Januari 2018 hingga Desember 2023. Model SVR dan LSTM masing-masing diuji menggunakan metrik Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) untuk mengukur tingkat akurasi hasil prediksi. Hasil penelitian menunjukkan bahwa model SVR menghasilkan nilai RMSE dan MAE yang lebih rendah pada 13 dari 17 kabupaten/kota, sehingga memiliki tingkat akurasi yang lebih baik dibandingkan model LSTM. Sementara itu, LSTM cenderung lebih sensitif terhadap fluktuasi data yang ekstrem pascapandemi, sehingga menghasilkan prediksi yang kurang stabil. Berdasarkan hasil tersebut, dapat disimpulkan bahwa model SVR lebih sesuai digunakan untuk memprediksi jumlah kunjungan wisatawan di wilayah dengan karakteristik data yang bersifat musiman dan fluktuatif seperti Sulawesi Tenggara. Temuan ini diharapkan dapat menjadi dasar dalam pengembangan sistem prediksi pariwisata berbasis machine learning yang lebih akurat dan adaptif.

Author Biographies

Sry, Teknologi Informasi Institut Teknologi dan Bisnis Muhammadiyah Wakatobi

Teknologi Informasi

Egi Dio Bagus Sudewo, Sistem Informasi Universitas Royal

Sistem Informasi

La Ode Alyandi, Teknologi Informasi Institut Teknologi dan Bisnis Muhammadiyah Wakatobi

Teknologi Informasi

References

Abdel-Aty, A. H., Nisar, K. S., Alharbi, W. R., Owyed, S., & Alsharif, M. H. (2024). Boosting Wind Turbine Performance With Advanced Smart Power Prediction: Employing A Hybrid ARMA-LSTM Technique. Alexandria Engineering Journal, 96, 58–71. https://doi.org/10.1016/j.aej.2024.03.078

Afrianto, M. A., & Wasesa, M. (2022). The Impact Of Tree-Based Machine Learning Models, Length Of Training Data, And Quarantine Search Query On Tourist Arrival Prediction’s Accuracy Under COVID-19 In Indonesia. Current Issues in Tourism, 25(23), 3854–3870. https://doi.org/10.1080/13683500.2022.2085079

Avenali, A., Catalano, G., D’Alfonso, T., & Matteucci, G. (2020). The Allocation Of National Public Resources In The Italian Local Public Bus Transport Sector. Research In Transportation Economics, 81, 100822. https://doi.org/10.1016/J.RETREC.2020.100822

BPS. (2024). Statistik Wisatawan Nusantara 2023. In Badan Pusat Statsitik

Chen, Y., Yang, J., Zhang, K., Xu, Y., & Liu, Y. (2021). A Feature-Cascaded Correntropy LSTM for Tourists Prediction. IEEE Access, 99, 32810–32822. https://doi.org/10.1109/ACCESS.2021.3059943

Christy, J., & Umamakeswari, A. (2020). Performance Enhancement of Outlier Removal Using Extreme Value Analysis-Based Mahalonobis Distance. IGI Global, 14. https://doi.org/10.4018/978-1-7998-2491-6.ch014

Dary, D,, Winata, A., Kumara, S., & Suhartono, D. (2021). Predicting Stock Market Prices Using Time Series SARIMA. Proceedings of 2021 1st International Conference on Computer Science and Artificial Intelligence, 24, 92–99. https://doi.org/10.1109/ICCSAI53272.2021.9609720

Hanafiah, N., Setiawan, Y., Buntaran, A., & Reynaldi, M. (2022). Sentiment Analysis of Tourism Objects on Trip Advisor Using LSTM Method. Journal of Computer Science and Technology Studies, 4(2), 01–06. https://doi.org/10.32996/jcsts.2022.4.2.1

He, H., Gao, S., Jin, T., Sato, S., & Zhang, X. (2021). A Seasonal-Trend Decomposition-Based Dendritic Neuron Model For Financial Time Series Prediction. Applied Soft Computing, 108, 107488. https://doi.org/10.1016/j.asoc.2021.107488

Huang, J., & Kaewunruen, S. (2023). Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression. Energies, 16(2). https://doi.org/10.3390/en16020966

Jiang, P., Wang, Z., Li, X., Wang, X. V., Yang, B., & Zheng, J. (2023). Energy Consumption Prediction And Optimization Of Industrial Robots Based On LSTM. Journal of Manufacturing Systems, 70, 137–148. https://doi.org/10.1016/j.jmsy.2023.07.009

Khaira, U., Putri, M. F., & Yanova, S. (2025). Peramalan Kadar PM 10 Menggunakan Algoritma Long Short-Term Memory ( LSTM ) Sebagai Acuan Ketersediaan Ruang Terbuka Hijau Di Kota Jambi. Decode, 5(1), 289–302. https://doi.org/http://dx.doi.org/10.51454/decode.v5i1.866

Li, J., Lv, P., Li, H., & Chen, W. (2022). Outlier Detection Based on Stacked Autoencoder and Gaussian Mixture Model. IEEE International Conference on Big Data (Big Data), 3763–3769. https://doi.org/10.1109/BigData55660.2022.10020738

Lima, M. A. F. B., Ramírez, L. M. F., Carvalho, P. C. M., Batista, J. G., & Freitas, D. M. (2021). A Comparison Between Deep Learning and Support Vector Regression Techniques Applied to Solar Forecast in Spain. Journal of Solar Energy Engineering, 144(1). https://doi.org/10.1115/1.4051949

Lin, B., Ghaddar, B., & Nathwani, J. (2022). Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11528–11538. https://doi.org/10.1109/TITS.2021.3105232

Ma, K., & Leung, H. (2019). A Novel LSTM Approach for Asynchronous Multivariate Time Series Prediction. In International Joint Conference on Neural Network (IJCNN), 30. https://doi.org/10.1109/IJCNN.2019.8851792

Madhulika, P. S. S., & Sampath, N. (2022). An Application of Normalizer Free Neural Networks on the SVHN Dataset. International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 238–242. https://doi.org/10.1109/ICAAIC53929.2022.9793301

Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2020). Deep Adaptive Input Normalization for Time Series Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3760–3765. https://doi.org/10.1109/TNNLS.2019.2944933

Pawar, P., Gonjari, S., Kshirsagar, S., & Chhajed, D. G. J. (2024). A Review of Linear Regression and Support Vector Regression. Interantional Journal Of Scientific Research In Engineering And Management, 08(12), 1–9. https://doi.org/10.55041/IJSREM40400

Proietti, T., Marczak, M., & Mazzi, G. (2019). A Class Of Periodic Trend Models For Seasonal Time Series. Journal Of Forecasting, 38(2), 106–121. https://doi.org/10.1002/for.2562

Salem, M., & Khalil, M. G. (2022). The Support Vector Regression Model: A New Improvement For Some Data Reduction Methods With Application. Pakistan Journal of Statistics and Operation Research, 18(2), 427-435. https://doi.org/10.18187/pjsor.v18i2.4049

Sangwan, N., & Bhatnagar, V. (2025). Multi-Branch LSTM Encoded Latent Features With CNN-LSTM For Youtube Popularity Prediction. Scientific Reports, 15(1), 2508. https://doi.org/10.1038/s41598-025-86785-3

Shuhua, C., Yuan, G., Desheng, L., Yi, S., & Di, W. (2023). Tourism Analytics Before and After COVID-19. Springer Nature Singapore, 119–137. https://doi.org/10.1007/978-981-19-9369-5_8

Sun, Y., Hao, J., Sun, Z., & Liu, D. (2025). Analyzing the Construction of Prediction Models Based on LSTM Machine Learning.International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), 622–625. https://doi.org/10.1109/ECNCT66493.2025.11172642

UNWTO. (2024). International Tourism Highlights, 2024 Edition. UN Tourism. https://doi.org/10.18111/9789284425808

Zhu, F., Gao, J., Xu, C., Yang, J., & Tao, D. (2018). On Selecting Effective Patterns for Fast Support Vector Regression Training. IEEE Transactions on Neural Networks, 3610 - 3622. https://doi.org/10.1109/TNNLS.2017.2734812

Zulkifli Noor, Z. (2022). Creating Tourism Sector Opportunities In The Time Of The Covid-19 Pandemic. Sosiohumaniora, 24(2), 272-280. https://doi.org/10.24198/sosiohumaniora.v24i2.38522

Downloads

Published

2025-11-04

How to Cite

Kariyamin, Hamka, S. F., Sudewo, E. D. B., & Alyandi, L. O. (2025). Prediksi Jumlah Kunjungan Wisatawan Nusantara ke Sulawesi Tenggara Menggunakan Pendekatan Machine Learning. Decode: Jurnal Pendidikan Teknologi Informasi, 5(3), 1031–1043. https://doi.org/10.51454/decode.v5i3.1352

Issue

Section

Articles