Prediksi Jumlah Kunjungan Wisatawan Nusantara ke Sulawesi Tenggara Menggunakan Pendekatan Machine Learning
DOI:
https://doi.org/10.51454/decode.v5i3.1352Keywords:
LSTM, Peramalan Pariwisata, Prediksi Derer Waktu, Sulawesi Tenggara, SVRAbstract
Prediksi jumlah kunjungan wisatawan merupakan aspek penting dalam perencanaan dan pengambilan kebijakan di sektor pariwisata. Penelitian ini bertujuan untuk menganalisis perbandingan kinerja model Support Vector Regression (SVR) dan Long Short-Term Memory (LSTM) dalam memprediksi jumlah kunjungan wisatawan nusantara ke Provinsi Sulawesi Tenggara. Data yang digunakan diperoleh dari Badan Pusat Statistik (BPS) Provinsi Sulawesi Tenggara periode Januari 2018 hingga Desember 2023. Model SVR dan LSTM masing-masing diuji menggunakan metrik Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) untuk mengukur tingkat akurasi hasil prediksi. Hasil penelitian menunjukkan bahwa model SVR menghasilkan nilai RMSE dan MAE yang lebih rendah pada 13 dari 17 kabupaten/kota, sehingga memiliki tingkat akurasi yang lebih baik dibandingkan model LSTM. Sementara itu, LSTM cenderung lebih sensitif terhadap fluktuasi data yang ekstrem pascapandemi, sehingga menghasilkan prediksi yang kurang stabil. Berdasarkan hasil tersebut, dapat disimpulkan bahwa model SVR lebih sesuai digunakan untuk memprediksi jumlah kunjungan wisatawan di wilayah dengan karakteristik data yang bersifat musiman dan fluktuatif seperti Sulawesi Tenggara. Temuan ini diharapkan dapat menjadi dasar dalam pengembangan sistem prediksi pariwisata berbasis machine learning yang lebih akurat dan adaptif.
References
Abdel-Aty, A. H., Nisar, K. S., Alharbi, W. R., Owyed, S., & Alsharif, M. H. (2024). Boosting Wind Turbine Performance With Advanced Smart Power Prediction: Employing A Hybrid ARMA-LSTM Technique. Alexandria Engineering Journal, 96, 58–71. https://doi.org/10.1016/j.aej.2024.03.078
Afrianto, M. A., & Wasesa, M. (2022). The Impact Of Tree-Based Machine Learning Models, Length Of Training Data, And Quarantine Search Query On Tourist Arrival Prediction’s Accuracy Under COVID-19 In Indonesia. Current Issues in Tourism, 25(23), 3854–3870. https://doi.org/10.1080/13683500.2022.2085079
Avenali, A., Catalano, G., D’Alfonso, T., & Matteucci, G. (2020). The Allocation Of National Public Resources In The Italian Local Public Bus Transport Sector. Research In Transportation Economics, 81, 100822. https://doi.org/10.1016/J.RETREC.2020.100822
BPS. (2024). Statistik Wisatawan Nusantara 2023. In Badan Pusat Statsitik
Chen, Y., Yang, J., Zhang, K., Xu, Y., & Liu, Y. (2021). A Feature-Cascaded Correntropy LSTM for Tourists Prediction. IEEE Access, 99, 32810–32822. https://doi.org/10.1109/ACCESS.2021.3059943
Christy, J., & Umamakeswari, A. (2020). Performance Enhancement of Outlier Removal Using Extreme Value Analysis-Based Mahalonobis Distance. IGI Global, 14. https://doi.org/10.4018/978-1-7998-2491-6.ch014
Dary, D,, Winata, A., Kumara, S., & Suhartono, D. (2021). Predicting Stock Market Prices Using Time Series SARIMA. Proceedings of 2021 1st International Conference on Computer Science and Artificial Intelligence, 24, 92–99. https://doi.org/10.1109/ICCSAI53272.2021.9609720
Hanafiah, N., Setiawan, Y., Buntaran, A., & Reynaldi, M. (2022). Sentiment Analysis of Tourism Objects on Trip Advisor Using LSTM Method. Journal of Computer Science and Technology Studies, 4(2), 01–06. https://doi.org/10.32996/jcsts.2022.4.2.1
He, H., Gao, S., Jin, T., Sato, S., & Zhang, X. (2021). A Seasonal-Trend Decomposition-Based Dendritic Neuron Model For Financial Time Series Prediction. Applied Soft Computing, 108, 107488. https://doi.org/10.1016/j.asoc.2021.107488
Huang, J., & Kaewunruen, S. (2023). Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression. Energies, 16(2). https://doi.org/10.3390/en16020966
Jiang, P., Wang, Z., Li, X., Wang, X. V., Yang, B., & Zheng, J. (2023). Energy Consumption Prediction And Optimization Of Industrial Robots Based On LSTM. Journal of Manufacturing Systems, 70, 137–148. https://doi.org/10.1016/j.jmsy.2023.07.009
Khaira, U., Putri, M. F., & Yanova, S. (2025). Peramalan Kadar PM 10 Menggunakan Algoritma Long Short-Term Memory ( LSTM ) Sebagai Acuan Ketersediaan Ruang Terbuka Hijau Di Kota Jambi. Decode, 5(1), 289–302. https://doi.org/http://dx.doi.org/10.51454/decode.v5i1.866
Li, J., Lv, P., Li, H., & Chen, W. (2022). Outlier Detection Based on Stacked Autoencoder and Gaussian Mixture Model. IEEE International Conference on Big Data (Big Data), 3763–3769. https://doi.org/10.1109/BigData55660.2022.10020738
Lima, M. A. F. B., Ramírez, L. M. F., Carvalho, P. C. M., Batista, J. G., & Freitas, D. M. (2021). A Comparison Between Deep Learning and Support Vector Regression Techniques Applied to Solar Forecast in Spain. Journal of Solar Energy Engineering, 144(1). https://doi.org/10.1115/1.4051949
Lin, B., Ghaddar, B., & Nathwani, J. (2022). Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11528–11538. https://doi.org/10.1109/TITS.2021.3105232
Ma, K., & Leung, H. (2019). A Novel LSTM Approach for Asynchronous Multivariate Time Series Prediction. In International Joint Conference on Neural Network (IJCNN), 30. https://doi.org/10.1109/IJCNN.2019.8851792
Madhulika, P. S. S., & Sampath, N. (2022). An Application of Normalizer Free Neural Networks on the SVHN Dataset. International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 238–242. https://doi.org/10.1109/ICAAIC53929.2022.9793301
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2020). Deep Adaptive Input Normalization for Time Series Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3760–3765. https://doi.org/10.1109/TNNLS.2019.2944933
Pawar, P., Gonjari, S., Kshirsagar, S., & Chhajed, D. G. J. (2024). A Review of Linear Regression and Support Vector Regression. Interantional Journal Of Scientific Research In Engineering And Management, 08(12), 1–9. https://doi.org/10.55041/IJSREM40400
Proietti, T., Marczak, M., & Mazzi, G. (2019). A Class Of Periodic Trend Models For Seasonal Time Series. Journal Of Forecasting, 38(2), 106–121. https://doi.org/10.1002/for.2562
Salem, M., & Khalil, M. G. (2022). The Support Vector Regression Model: A New Improvement For Some Data Reduction Methods With Application. Pakistan Journal of Statistics and Operation Research, 18(2), 427-435. https://doi.org/10.18187/pjsor.v18i2.4049
Sangwan, N., & Bhatnagar, V. (2025). Multi-Branch LSTM Encoded Latent Features With CNN-LSTM For Youtube Popularity Prediction. Scientific Reports, 15(1), 2508. https://doi.org/10.1038/s41598-025-86785-3
Shuhua, C., Yuan, G., Desheng, L., Yi, S., & Di, W. (2023). Tourism Analytics Before and After COVID-19. Springer Nature Singapore, 119–137. https://doi.org/10.1007/978-981-19-9369-5_8
Sun, Y., Hao, J., Sun, Z., & Liu, D. (2025). Analyzing the Construction of Prediction Models Based on LSTM Machine Learning.International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), 622–625. https://doi.org/10.1109/ECNCT66493.2025.11172642
UNWTO. (2024). International Tourism Highlights, 2024 Edition. UN Tourism. https://doi.org/10.18111/9789284425808
Zhu, F., Gao, J., Xu, C., Yang, J., & Tao, D. (2018). On Selecting Effective Patterns for Fast Support Vector Regression Training. IEEE Transactions on Neural Networks, 3610 - 3622. https://doi.org/10.1109/TNNLS.2017.2734812
Zulkifli Noor, Z. (2022). Creating Tourism Sector Opportunities In The Time Of The Covid-19 Pandemic. Sosiohumaniora, 24(2), 272-280. https://doi.org/10.24198/sosiohumaniora.v24i2.38522
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kariyamin, Sry, Egi Dio Bagus Sudewo, La Ode Alyandi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









