Development of a Hybrid Voting Model with SMOTE and Random Search for Classification of Religious Facility Grant Recipients
DOI:
https://doi.org/10.51454/decode.v5i3.1342Keywords:
Hybrid Voting, Machine Learning, Random Search, Religious Facility Grand, SMOTEAbstract
The process of determining recipients of religious facility grants requires high accuracy to ensure that aid is distributed fairly and supports equitable community services. Manual selection methods often face challenges such as data imbalance, diverse assessment criteria, and subjective decision-making, which can reduce accuracy and efficiency. This study proposes a hybrid machine learning model using Voting Ensemble (Hard and Soft), combining Logistic Regression (LR), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN), optimized with Random Search and supported by SMOTE to handle class imbalance. The dataset consists of religious facility grant applications in Riau Province, with preprocessing, SMOTE balancing, and Stratified K-Fold Cross Validation applied for robust evaluation. The experimental results show that the Hybrid Voting model outperforms single models, achieving an average accuracy of 99.46%, with precision, recall, and F1-score consistently above 96%, and some folds achieving 100% accuracy. These findings demonstrate that the hybrid approach enhances prediction stability, reduces misclassification of minority classes, and provides a decision-support system that is objective, accurate, and efficient for grant recipient selection.
References
Abubakar, M. A., Muliadi, M., Farmadi, A., Herteno, R., & Ramadhani, R. (2023). Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung. Jurnal Informatika, 10(1), 13–18. https://doi.org/10.31294/inf.v10i1.14531
Agustina, N., & Ihsan, C. N. (2023). Pendekatan Ensemble Untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 10(2), 263–270. https://doi.org/10.25126/jtiik.20231026215
Anam, M. K., Lestari, T. P., Yenni, H., Nasution, T., & Firdaus, M. B. (2025). Enhancement of Machine Learning Algorithm in Fine-grained Sentiment Analysis Using the Ensemble. ECTI Transactions on Computer and Information Technology (ECTI-CIT), 19(2), 159–167. https://doi.org/10.37936/ecti-cit.2025192.257815
Anam, M. K., Putra, P. P., Malik, R. A., Karfindo, K., Putra, T. A., Elva, Y., Mahessya, R. A., Firdaus, M. B., Ikhsan, & Gunawan, C. R. (2025). Enhancing the Performance of Machine Learning Algorithm for Intent Sentiment Analysis on Village Fund Topic. Journal of Applied Data Sciences, 6(2), 1102–1115. https://doi.org/10.47738/jads.v6i2.637
Aprihartha, A. (2024). Implementasi Metode Support Vector Machine (SVM) pada Klasifikasi Status Penerima Bantuan Pangan Non Tunai. JSI : Jurnal Sistem Informasi, 16(2), 313–324. https://doi.org/10.18495/jsi.v16i2.123
Aribowo, A. S., Cahyana, N. H., & Fauziah, Y. (2024). Enhancing Semi-Supervised Sentiment Analysis Through Hyperparameter Tuning Within Iterations: A Comparative Study Using Grid Search and Random Search. International Conference on Advanced Informatics and Intelligent Information Systems, 248–260. https://doi.org/10.2991/978-94-6463-366-5_23
Dang, X. T., & Le, T. T. (2024). KNN-SMOTE: An Innovative Resampling Technique Enhancing the Efficacy of Imbalanced Biomedical Classification. Springer Nature Switzerland, 111–121. https://doi.org/10.1007/978-3-031-63929-6_11
Handayani, D. N., & Qutub, S. (2025). Penerapan Random Forest Untuk Prediksi Dan Analisis Kemiskinan. RIGGS: Journal of Artificial Intelligence and Digital Business, 4(2), 405–412. https://doi.org/10.31004/riggs.v4i2.512
Putra, P. P., Anam, M. K., Chan, A. S., Hadi, A., Hendri, N., & Masnur, A. (2025). Optimizing Sentiment Analysis on Imbalanced Hotel Review Data Using SMOTE and Ensemble Machine Learning Techniques. Journal of Applied Data Sciences, 6(2), 936–951. https://doi.org/10.47738/jads.v6i2.618
Qadrini, L., Hikmah, H., & Megasari, M. (2022). Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017. Journal of Computer System and Informatics (JoSYC), 3(4), 386–391. https://doi.org/10.47065/josyc.v3i4.2154
Rahayu, K., Anam, M. K., Efrizoni, L., Nurjayadi, & Fitri, T. A. (2024). Optimasi Teknik Voting Pada Sentimen Analisis Pemilihan Presiden 2024 Menggunakan Machine Learning. The Indonesian Journal of Computer Science, 13(4), 6289–6302. https://doi.org/10.33022/ijcs.v13i4.4119
Raisyah, S. I., Zufria, I., & Triase, T. (2024). Sistem Pendukung Keputusan Dalam Menentukan Kelayakan Bantuan Dana Hibah Fasilitas Rumah Ibadah Menggunakan Metode AHP. TIN: Terapan Informatika Nusantara, 5(3), 196–208. https://doi.org/10.47065/tin.v5i3.5558
Ramadani, P., Fadillah, R., Adawiyah, Q., & Al Ghazali, B. R. (2024). Perbandingan Algoritma Naïve Bayes, C4.5, dan K-Nearest Neighbor untuk Klasifikasi Kelayakan Program Keluarga Harapan. Jurnal Media Informatika, 6(2), 775–782.
Reza, A. A. R., & Rohman, M. S. (2024). Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization. Journal Of Informatics And Telecommunication Engineering, 7(2), 534–544. https://doi.org/10.31289/jite.v7i2.10628
Ridwan, R., Hermaliani, E. H., & Ernawati, M. (2024). Penerapan Metode SMOTE Untuk Mengatasi Imbalanced Data Pada. Computer Science (CO-SCIENCE), 4(1), 80–88. https://doi.org/10.31294/coscience.v4i1.2990
Shah, S., Ghomeshi, H., Vakaj, E., Cooper, E., & Mohammad, R. (2023). An Ensemble-Learning-Based Technique for Bimodal Sentiment Analysis. Big Data and Cognitive Computing, 7(2), 1–20. https://doi.org/10.3390/bdcc7020085
Susrifalah, A., Vionanda, D., Kurniawati, Y., & Sulistiowati, D. (2025). Penerapan Algoritma Extreme Gradient Boosting dengan ADASYN untuk Klasifikasi Rumah Tangga Penerima Program Keluarga Harapan di Provinsi Sumatera Barat. UNP Journal of Statistics and Data Science, 3(2), 232–239. https://doi.org/10.24036/ujsds/vol3-iss2/369
Syamsiah, N. O., & Purwandani, I. (2023). Penerapan Metode Stacking Untuk Meningkatkan Akurasi Hasil Peramalan Konsumsi Listrik. Journal of System and Computer Engineering (JSCE) ISSN, 4(1), 15–25. https://doi.org/10.47650/jsce.v4i1.665
VanFC, L. L., Anam, M. K., Bukhori, S., Mahamad, A. K., Saon, S., & Nyoto, R. L. V. (2025). The Development of Stacking Techniques in Machine Learning for Breast Cancer Detection. Journal of Applied Data Sciences, 6(1), 71–85. https://doi.org/10.47738/jads.v6i1.416
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Jamaris, Rita Novita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









