Perbandingan Penanganan Missing Value pada Data Numerik Survei Kepuasan Pengguna Lulusan

Authors

  • Dikky Praseptian M Sistem Informasi STMIK PPKIA Tarakanita Rahmawati
  • Sinawati Sistem Informasi STMIK PPKIA Tarakanita Rahmawati
  • Kandi Harianto Teknik Informatika STMIK PPKIA Tarakanita Rahmawati

DOI:

https://doi.org/10.51454/decode.v5i2.1262

Keywords:

Kepauasan, MAPE, Nilai Hilang, Pengguna Lulusan, RMSE

Abstract

Data survei kepuasan pengguna lulusan merupakan cara yang dilakukan perguruan tinggi untuk menilai kualitas perguruan tinggi ditinjau dari aspek kepuasan pengguna lulusan. Data tersebut sering terjadi adanya nilai atribut yang hilang yang disebut dengan missing value. Missing value ini dapat terjadi karena beberapa alasan tetapi paling sering tidak dapat dinilai karena aspek yang dimaksud tidak digunakan dalam bidang pekerjaan lulusan. Penelitian ini menggunakan data survei kepuasan pengguna lulusan dengan jumlah 100 record dan proporsi missing value sebesar 20% pada atribut numerik. Evaluasi kinerja dilakukan menggunakan metode Root Mean Square Error (RMSE) dan Mean Absolute Percentage Error (MAPE) untuk membandingkan empat teknik imputasi missing value yang tersedia di RapidMiner, yaitu mengganti dengan nilai rata-rata, nilai minimum, nilai maksimum dan nilai 0. Pengukuran kinerja menunjukkan model rata-rata memperoleh hasil terbaik dibanding dengan model yang lainnya, dimana nilai error pada RMSE sebesar 0.742 dan pada MAPE sebesar 13.67%. Pengukuran kinerja juga memperlihatkan tiga model lainnya berasa pada nilai error > 1 pada RMSE dan >20% pada MAPE, bahkan pada model nilai 0 nilai error pada MAPE mencapai 100% sehinggan sangat tidak disarankan mengganti nilai hilang numerik dengan 0.

References

Acuña, E., & Rodriguez, C. (2004). The treatment of missing values and its effect on classifier accuracy. Classification, Clustering, and Data Mining Applications, 639-647. https://doi.org/10.1007/978-3-642-17103-1_60

Al-Khowarizmi, R., Syah, R., Nasution, M. K. M., & Elveny, M. (2021). Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor. International Journal of Electrical and Computer Engineering, 11(3). https://doi.org/10.11591/ijece.v11i3.pp2696-2703

Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5–6). https://doi.org/10.1080/713827181

Deb, R., & Liew, A. W. C. (2016). Missing value imputation for the analysis of incomplete traffic accident data. Information Sciences, 339. https://doi.org/10.1016/j.ins.2016.01.018

Dixon, J. K. (1979). Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, 9(10). https://doi.org/10.1109/TSMC.1979.4310090

Ghorbani, S., & Desmarais, M. C. (2017). Performance comparison of recent imputation methods for classification tasks over binary data. Applied Artificial Intelligence, 31(1). https://doi.org/10.1080/08839514.2017.1279046

Grzymala-Busse, J. W., & Hu, M. (2001). A comparison of several approaches to missing attribute values in data mining. In Lecture Notes in Computer Science. https://doi.org/10.1007/3-540-45554-X_46

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14). https://doi.org/10.5194/gmd-15-5481-2022

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance of data imputation methods for numeric dataset. Applied Artificial Intelligence, 33(10), 913–933. https://doi.org/10.1080/08839514.2019.1637138

Joshi, A., Kale, S., Chandel, S., & Pal, D. (2015). Likert Scale: Explored and explained. British Journal of Applied Science & Technology, 7(4). https://doi.org/10.9734/BJAST/2015/14975

Little, R. J., & Rubin, D. B. (2012). The prevention and treatment of missing data in clinical trials. New England Journal of Medicine, 367(14). https://doi.org/10.1056/nejmsr1203730

Luengo, J., García, S., & Herrera, F. (2012). On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowledge and Information Systems, 32(1). https://doi.org/10.1007/s10115-011-0424-2

Mandel, S. P., & Jadhav, J. (2015). A comparison of six methods for missing data imputation. Journal of Biom. Biostat., 06(01). https://doi.org/10.4172/2155-6180.1000224

Mayni, N., Manurung, N., & Nehe, N. K. (2024). Penerapan metode Single Exponential Smoothing prediksi stok sembako pada Toko Suci Berkah di Sei Piring Kecamatan Pulau Rakyat. DECODE: Jurnal Pendidikan Teknologi Informasi, 4(3), 748–763. https://doi.org/10.51454/decode.v4i3.495

Mundfrom, D., & Whitcomb, A. (1998). Imputing missing values: The effect on the accuracy of classification. General Linear Model Journal, 25(1).

Nanni, L., Lumini, A., & Brahnam, S. (2012). A classifier ensemble approach for the missing feature problem. Artificial Intelligence in Medicine, 55(1). https://doi.org/10.1016/j.artmed.2011.11.006

Ngueilbaye, A., Wang, H., Mahamat, D. A., & Junaidu, S. B. (2021). Modulo 9 model-based learning for missing data imputation. Applied Soft Computing, 103. https://doi.org/10.1016/j.asoc.2021.107167

Noyunsan, C., Katanyukul, T., & Saikaew, K. (2018). Performance evaluation of supervised learning algorithms with various training data sizes and missing attributes. Engineering and Applied Science Research, 45(3). https://doi.org/10.14456/easr.2018.28

Troyanskaya, O., et al. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6). https://doi.org/10.1093/bioinformatics/17.6.520

Winarni, I., & Pratiwi, N. (2024). Prediksi harga saham menggunakan metode Long Short-Term Memory: Studi kasus saham Intel Corporation. DECODE: Jurnal Pendidikan Teknologi Informasi, 5(2), 380–390. https://doi.org/10.51454/decode.v5i2.1192

Xu, X., Chong, W., Li, S., Arabo, A., & Xiao, J. (2018). MIAEC: Missing data imputation based on the evidence Chain. IEEE Access, 6. https://doi.org/10.1109/ACCESS.2018.2803755

Yan, Y., Wu, Y., Du, X., & Zhang, Y. (2021). Incomplete data ensemble classification using imputation-revision framework with local spatial neighborhood information. Applied Soft Computing, 99. https://doi.org/10.1016/j.asoc.2020.106905

Downloads

Published

2025-07-31

How to Cite

Praseptian M, D., Sinawati, & Harianto, K. (2025). Perbandingan Penanganan Missing Value pada Data Numerik Survei Kepuasan Pengguna Lulusan. Decode: Jurnal Pendidikan Teknologi Informasi, 5(2), 789–798. https://doi.org/10.51454/decode.v5i2.1262

Issue

Section

Articles