Comparative Study on the Efficiency of Deep Learning Model Training in Cloud Environments: Google Colab vs AWS

Authors

  • Oki Arifin Department of Software Engineering Technology Politeknik Negeri Lampung
  • Fauzan Azim Department of Informatics Engineering Universitas Muhammadiyah Riau
  • Yuli Hartati Department of Information Systems Institut Teknologi dan Ilmu Sosial Khatulistiwa
  • Dewi Kania Widyawati Department of Informatics Management Politeknik Negeri Lampung
  • Ahmad Luqman Ahmad Kamal Ariffin Faculty of Information Sciences and Engineering Management and Science University

DOI:

https://doi.org/10.51454/decode.v5i2.1197

Keywords:

Amazon Web Services (AWS), Cloud Computing, Deep Learning, Google Colab, Training Efficiency Model

Abstract

Deep learning has become a major foundation in the development of modern artificial intelligence technologies, especially in the applications of image recognition, natural language processing, and recommendation systems. However, the training process of deep learning models requires large and efficient computing resources. This study aims to evaluate the efficiency of training deep learning models on two popular cloud platforms, namely Google Colab and Amazon Web Services (AWS). The method used is a comparative experiment with a simple Convolutional Neural Network (CNN) model trained using the CIFAR-10 dataset, and Identical training hyperparameters were applied on both platforms. The results show that Google Colab demonstrates greater cost efficiency as it provides GPUs for free, while AWS provides faster training performance and slightly higher validation accuracy. This study concludes that platform selection should be tailored to the user's needs, both in terms of budget, project scale, and system stability. These findings offer preliminary guidance for selecting cloud platforms in small- to medium-scale deep learning projects.

References

Agustina, N., Ihsan, C. N., & Sussolaikah, K. (2023). Image Classification Using Machine Learning Algorithms to Detect Cloud Types. Jurnal Teknologi Informasi Komunikasi, 10(2), 341–348.

Anggarda, M. F., Kustiawan, I., Nurjanah, D. R., & Hakim, N. F. A. (2023). Pengembangan Sistem Prediksi Waktu Penyiraman Optimal pada Perkebunan: Pendekatan Machine Learning untuk Peningkatan Produktivitas Pertanian. Jurnal Budidaya Pertanian, 19(2), 124–136. https://doi.org/10.30598/jbdp.2023.19.2.124

Bangkit, D. A. (2022). UIN Syarif Hidayatullah Jakarta Implementasi Named-Entity Recognition dan Optical Character Recognition untuk Aplikasi Program Studi Teknik Informatika.

Bayazitov, D., Kozhakhmet, K., Omirali, A., & Zhumaliyeva, R. (2024). Leveraging Amazon Web Services for Cloud Storage and AI Algorithm Integration: A Comprehensive Analysis. Applied Mathematics & Information Sciences, 18(6), 1235–1246. https://doi.org/10.18576/amis/180606

Bommala, H., Uma Maheswari, V., Aluvalu, R., & Mudrakola, S. (2023). Machine learning job failure analysis and prediction model for the cloud environment. High-Confidence Computing, 3(4), 100165. https://doi.org/10.1016/j.hcc.2023.100165

Carneiro, T., Da Nobrega, R. V. M., Nepomuceno, T., Bian, G. Bin, De Albuquerque, V. H. C., & Filho, P. P. R. (2018). Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access, 6, 61677–61685. https://doi.org/10.1109/ACCESS.2018.2874767

Cueto-Mendoza, E., & Kelleher, J. (2024). A framework for measuring the training efficiency of a neural architecture. Artificial Intelligence Review, 57(12), 349. https://doi.org/10.1007/s10462-024-10943-8

Guan, L., Zhang, S., & Chen, Y. (2024). Energy-Efficient Deep Learning Training. In Advances in Energy Recovery and Efficiency Technologies (pp. 1–18). IntechOpen. https://doi.org/10.5772/intechopen.1007491

Hasanpour, S. H., Rouhani, M., Fayyaz, M., & Sabokrou, M. (2016). Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures. ArXiv, 1–20. http://arxiv.org/abs/1608.06037

Herlawati, H. (2024). Learning Tools for Artificial Intelligence Implementation. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(1), 79–88. https://doi.org/10.33558/piksel.v12i1.9476

Hermawan, I., & Rizqi, R. A. (2022). Implementation of Google Classroom platform in distance learning. Journal of Information Technology Education.

Islam, U., & Mataram, N. (2021). Adaptation Strategies of Islamic Boarding Schools in Lombok in Facing the Digital Age. 3(1), 76–92. https://doi.org/10.37680/scaffolding.v3i1.6300

Ismawan, F., Irfansyah, P., & Apriyani, D. D. (2018). Pengoptimalan Cloud Storage –Google Drive sebagai Media Pembelajaran untuk Guru SMP dan SMA. Jurnal PkM Pengabdian Kepada Masyarakat, 1(01), 61. https://doi.org/10.30998/jurnalpkm.v1i01.2362

Kim, H. (2022). Deep Learning. Artificial Intelligence for 6G, 22(4), 247–303. https://doi.org/10.1007/978-3-030-95041-5_6

Munaldi, M., & Sundawa, E. (2025). Literature Review : Deep Learning Analisis Kinerja Sistem Cloud Computing Amazon Web Service ( AWS), Google Cloud Platform ( GCP ) Dengan Metode Bohem’s. JRIIN : Jurnal Riset Informatika Dan Inovasi, 2(9), 1688–1692.

Panigrahi, M., Bharti, S., & Sharma, A. (2023). FedDCS: A distributed client selection framework for cross device federated learning. Future Generation Computer Systems, 144, 24–36. https://doi.org/10.1016/J.FUTURE.2023.02.001

Prasiwiningrum, E., & Adyanata Lubis. (2024). Classification Of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50. Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 983–999. https://doi.org/10.51454/decode.v4i3.822

Putra, N. S., Hutabarat, B. F., & Khaira, U. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1), 82–93. https://doi.org/10.51454/decode.v3i1.123

Rajendran, P., Maloo, S., Mitra, R., Chanchal, A., & Aburukba, R. (2023). Comparison of Cloud-Computing Providers for Deployment of Object-Detection Deep Learning Models. Applied Sciences (Switzerland), 13(23). https://doi.org/10.3390/app132312577

Ramadhan, F. C., & Baihaqi, W. M. (2024). Implementasi dan Deployment Model Machine Learning Menggunakan App Engine pada Google Cloud Platform. 1(3), 197–205.

Sekar, J., & Llc, A. (2023). Deep Learning As A Service (Dlaas) in Cloud Computing : Performance and Scalability Analysis. 10(3), 541–551.

Sharma, P., Dadheech, P., Aneja, N., & Aneja, S. (2023). Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning. IEEE Access, 11(October), 111255–111264. https://doi.org/10.1109/ACCESS.2023.3321861

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Suhaedi, M., Abdillah, H., & Rizki Liliandari, A. (2023). Skin Cancer Image Detection System Using the Convolutional Neural Network Model. Teknokom, 6(1), 20–28. https://doi.org/10.31943/teknokom.v6i1.106

Suryana, Y., & Nugraha, F. (2021). Development of interactive learning media based on Android. Journal of Information Technology Education.

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 36th International Conference on Machine Learning, ICML 2019, 10691–10700. https://doi.org/https://doi.org/10.48550/arXiv.1905.11946

Wijati, D., Atika, P. D., Setiawati, S., & Rasim, R. (2024). Sentiment Analysis of Application Reviews using the K-Nearest Neighbors (KNN) Algorithm. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(1), 209–218. https://doi.org/10.33558/piksel.v12i1.9490

Wright, N., Duncan, J. M. A., Callow, J. N., Thompson, S. E., & George, R. J. (2025). Training sensor-agnostic deep learning models for remote sensing: Achieving state-of-the-art cloud and cloud shadow identification with OmniCloudMask. Remote Sensing of Environment, 322(March), 114694. https://doi.org/10.1016/j.rse.2025.114694

Yahyaoui, H., Maamar, Z., Alkhafajiy, M., & Al-Hamadi, H. (2022). Trust-based management in IoT federations. Future Generation Computer Systems, 136, 182–192. https://doi.org/10.1016/j.future.2022.06.003

Downloads

Published

2025-07-19

How to Cite

Arifin, O., Azim, F. ., Hartati, Y. ., Widyawati, D. K., & Ariffin, A. L. A. K. (2025). Comparative Study on the Efficiency of Deep Learning Model Training in Cloud Environments: Google Colab vs AWS. Decode: Jurnal Pendidikan Teknologi Informasi, 5(2), 324–332. https://doi.org/10.51454/decode.v5i2.1197

Issue

Section

Articles