Comparative Study on the Efficiency of Deep Learning Model Training in Cloud Environments: Google Colab vs AWS
DOI:
https://doi.org/10.51454/decode.v5i2.1197Keywords:
Amazon Web Services (AWS), Cloud Computing, Deep Learning, Google Colab, Training Efficiency ModelAbstract
Deep learning has become a major foundation in the development of modern artificial intelligence technologies, especially in the applications of image recognition, natural language processing, and recommendation systems. However, the training process of deep learning models requires large and efficient computing resources. This study aims to evaluate the efficiency of training deep learning models on two popular cloud platforms, namely Google Colab and Amazon Web Services (AWS). The method used is a comparative experiment with a simple Convolutional Neural Network (CNN) model trained using the CIFAR-10 dataset, and Identical training hyperparameters were applied on both platforms. The results show that Google Colab demonstrates greater cost efficiency as it provides GPUs for free, while AWS provides faster training performance and slightly higher validation accuracy. This study concludes that platform selection should be tailored to the user's needs, both in terms of budget, project scale, and system stability. These findings offer preliminary guidance for selecting cloud platforms in small- to medium-scale deep learning projects.
References
Agustina, N., Ihsan, C. N., & Sussolaikah, K. (2023). Image Classification Using Machine Learning Algorithms to Detect Cloud Types. Jurnal Teknologi Informasi Komunikasi, 10(2), 341–348.
Anggarda, M. F., Kustiawan, I., Nurjanah, D. R., & Hakim, N. F. A. (2023). Pengembangan Sistem Prediksi Waktu Penyiraman Optimal pada Perkebunan: Pendekatan Machine Learning untuk Peningkatan Produktivitas Pertanian. Jurnal Budidaya Pertanian, 19(2), 124–136. https://doi.org/10.30598/jbdp.2023.19.2.124
Bangkit, D. A. (2022). UIN Syarif Hidayatullah Jakarta Implementasi Named-Entity Recognition dan Optical Character Recognition untuk Aplikasi Program Studi Teknik Informatika.
Bayazitov, D., Kozhakhmet, K., Omirali, A., & Zhumaliyeva, R. (2024). Leveraging Amazon Web Services for Cloud Storage and AI Algorithm Integration: A Comprehensive Analysis. Applied Mathematics & Information Sciences, 18(6), 1235–1246. https://doi.org/10.18576/amis/180606
Bommala, H., Uma Maheswari, V., Aluvalu, R., & Mudrakola, S. (2023). Machine learning job failure analysis and prediction model for the cloud environment. High-Confidence Computing, 3(4), 100165. https://doi.org/10.1016/j.hcc.2023.100165
Carneiro, T., Da Nobrega, R. V. M., Nepomuceno, T., Bian, G. Bin, De Albuquerque, V. H. C., & Filho, P. P. R. (2018). Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access, 6, 61677–61685. https://doi.org/10.1109/ACCESS.2018.2874767
Cueto-Mendoza, E., & Kelleher, J. (2024). A framework for measuring the training efficiency of a neural architecture. Artificial Intelligence Review, 57(12), 349. https://doi.org/10.1007/s10462-024-10943-8
Guan, L., Zhang, S., & Chen, Y. (2024). Energy-Efficient Deep Learning Training. In Advances in Energy Recovery and Efficiency Technologies (pp. 1–18). IntechOpen. https://doi.org/10.5772/intechopen.1007491
Hasanpour, S. H., Rouhani, M., Fayyaz, M., & Sabokrou, M. (2016). Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures. ArXiv, 1–20. http://arxiv.org/abs/1608.06037
Herlawati, H. (2024). Learning Tools for Artificial Intelligence Implementation. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(1), 79–88. https://doi.org/10.33558/piksel.v12i1.9476
Hermawan, I., & Rizqi, R. A. (2022). Implementation of Google Classroom platform in distance learning. Journal of Information Technology Education.
Islam, U., & Mataram, N. (2021). Adaptation Strategies of Islamic Boarding Schools in Lombok in Facing the Digital Age. 3(1), 76–92. https://doi.org/10.37680/scaffolding.v3i1.6300
Ismawan, F., Irfansyah, P., & Apriyani, D. D. (2018). Pengoptimalan Cloud Storage –Google Drive sebagai Media Pembelajaran untuk Guru SMP dan SMA. Jurnal PkM Pengabdian Kepada Masyarakat, 1(01), 61. https://doi.org/10.30998/jurnalpkm.v1i01.2362
Kim, H. (2022). Deep Learning. Artificial Intelligence for 6G, 22(4), 247–303. https://doi.org/10.1007/978-3-030-95041-5_6
Munaldi, M., & Sundawa, E. (2025). Literature Review : Deep Learning Analisis Kinerja Sistem Cloud Computing Amazon Web Service ( AWS), Google Cloud Platform ( GCP ) Dengan Metode Bohem’s. JRIIN : Jurnal Riset Informatika Dan Inovasi, 2(9), 1688–1692.
Panigrahi, M., Bharti, S., & Sharma, A. (2023). FedDCS: A distributed client selection framework for cross device federated learning. Future Generation Computer Systems, 144, 24–36. https://doi.org/10.1016/J.FUTURE.2023.02.001
Prasiwiningrum, E., & Adyanata Lubis. (2024). Classification Of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50. Decode: Jurnal Pendidikan Teknologi Informasi, 4(3), 983–999. https://doi.org/10.51454/decode.v4i3.822
Putra, N. S., Hutabarat, B. F., & Khaira, U. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1), 82–93. https://doi.org/10.51454/decode.v3i1.123
Rajendran, P., Maloo, S., Mitra, R., Chanchal, A., & Aburukba, R. (2023). Comparison of Cloud-Computing Providers for Deployment of Object-Detection Deep Learning Models. Applied Sciences (Switzerland), 13(23). https://doi.org/10.3390/app132312577
Ramadhan, F. C., & Baihaqi, W. M. (2024). Implementasi dan Deployment Model Machine Learning Menggunakan App Engine pada Google Cloud Platform. 1(3), 197–205.
Sekar, J., & Llc, A. (2023). Deep Learning As A Service (Dlaas) in Cloud Computing : Performance and Scalability Analysis. 10(3), 541–551.
Sharma, P., Dadheech, P., Aneja, N., & Aneja, S. (2023). Predicting Agriculture Yields Based on Machine Learning Using Regression and Deep Learning. IEEE Access, 11(October), 111255–111264. https://doi.org/10.1109/ACCESS.2023.3321861
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Suhaedi, M., Abdillah, H., & Rizki Liliandari, A. (2023). Skin Cancer Image Detection System Using the Convolutional Neural Network Model. Teknokom, 6(1), 20–28. https://doi.org/10.31943/teknokom.v6i1.106
Suryana, Y., & Nugraha, F. (2021). Development of interactive learning media based on Android. Journal of Information Technology Education.
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 36th International Conference on Machine Learning, ICML 2019, 10691–10700. https://doi.org/https://doi.org/10.48550/arXiv.1905.11946
Wijati, D., Atika, P. D., Setiawati, S., & Rasim, R. (2024). Sentiment Analysis of Application Reviews using the K-Nearest Neighbors (KNN) Algorithm. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(1), 209–218. https://doi.org/10.33558/piksel.v12i1.9490
Wright, N., Duncan, J. M. A., Callow, J. N., Thompson, S. E., & George, R. J. (2025). Training sensor-agnostic deep learning models for remote sensing: Achieving state-of-the-art cloud and cloud shadow identification with OmniCloudMask. Remote Sensing of Environment, 322(March), 114694. https://doi.org/10.1016/j.rse.2025.114694
Yahyaoui, H., Maamar, Z., Alkhafajiy, M., & Al-Hamadi, H. (2022). Trust-based management in IoT federations. Future Generation Computer Systems, 136, 182–192. https://doi.org/10.1016/j.future.2022.06.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oki Arifin, Fauzan Azim, Yuli Hartati, Dewi Kania Widyawati, Ahmad Luqman Ahmad Kamal Ariffin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









