Model Prediksi Manajemen Stok Produk Berbasis Deep Learning Gated Recurrent Unit untuk Optimalisasi Rantai Pasok E-Commerce
DOI:
https://doi.org/10.51454/decode.v5i1.1130Keywords:
Deep Learning, Gated Recurrent Unit (GRU)), Manajemen StokAbstract
Perkembangan pesat e-commerce mendorong kebutuhan akan sistem manajemen stok produk yang adaptif dan presisi tinggi untuk menjaga kesinambungan rantai pasok. Ketidakseimbangan antara permintaan konsumen dan ketersediaan stok dapat menyebabkan kerugian signifikan, baik dalam bentuk overstock maupun stockout. Penelitian ini bertujuan untuk merancang model prediksi manajemen stok produk berbasis algoritma deep learning Gated Recurrent Unit (GRU) untuk meningkatkan efisiensi rantai pasok e-commerce. Metode yang digunakan mencakup pengumpulan data historis penjualan, preprocessing data (normalisasi, pembersihan, dan pembagian data pelatihan dan pengujian), perancangan arsitektur model GRU, serta pelatihan dan evaluasi model menggunakan metrik RMSE, MAE, MAPE, dan koefisien determinasi R². Hasil eksperimen menunjukkan bahwa model GRU memberikan performa terbaik pada epoch ke-200 dengan RMSE 622.94, MAE 451.04, MAPE 0.15, dan nilai R² sebesar 0.70. Temuan ini menunjukkan bahwa GRU efektif dalam memodelkan data deret waktu untuk prediksi permintaan produk. Kesimpulannya, model GRU dapat menjadi pendekatan yang inovatif dan andal dalam mendukung keputusan manajerial berbasis data guna meningkatkan efisiensi rantai pasok e-commerce.
References
Ait Mansour, A., Tilioua, A., & Touzani, M. (2024). Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system. Results in Engineering, 21, 101886. https://doi.org/10.1016/j.rineng.2024.101886
Andrade, L. A. C. G., & Cunha, C. B. (2023). Disaggregated retail forecasting: A gradient boosting approach. Applied Soft Computing, 141, 110283. https://doi.org/10.1016/j.asoc.2023.110283
ArunKumar, K. E., Kalaga, D. V., Mohan Sai Kumar, Ch., Kawaji, M., & Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal, 61(10), 7585–7603. https://doi.org/10.1016/j.aej.2022.01.011
Chaudhuri, N., Gupta, G., Vamsi, V., & Bose, I. (2021). On the platform but will they buy? Predicting customers’ purchase behavior using deep learning. Decision Support Systems, 149, 113622. https://doi.org/10.1016/j.dss.2021.113622
Corsten, D., & Gruen, T. (2003). Desperately seeking shelf availability: an examination of the extent, the causes, and the efforts to address retail out‐of‐stocks. International Journal of Retail & Distribution Management, 31(12), 605–617. https://doi.org/10.1108/09590550310507731
DiPietro, R., & Hager, G. D. (2020). Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted Intervention (pp. 503–519). Elsevier. https://doi.org/10.1016/B978-0-12-816176-0.00026-0
Islam, M. S., & Hossain, E. (2021). Foreign exchange currency rate prediction using a GRU-LSTM hybrid network. Soft Computing Letters, 3, 100009. https://doi.org/10.1016/j.socl.2020.100009
Johny, K., Pai, M. L., & S., A. (2022). A multivariate EMD-LSTM model aided with Time Dependent Intrinsic Cross-Correlation for monthly rainfall prediction. Applied Soft Computing, 123, 108941. https://doi.org/10.1016/j.asoc.2022.108941
Ozdemir, A. C., Buluş, K., & Zor, K. (2022a). Medium- to long-term nickel price forecasting using LSTM and GRU networks. Resources Policy, 78, 102906. https://doi.org/10.1016/j.resourpol.2022.102906
Ozdemir, A. C., Buluş, K., & Zor, K. (2022b). Medium- to long-term nickel price forecasting using LSTM and GRU networks. Resources Policy, 78, 102906. https://doi.org/10.1016/j.resourpol.2022.102906
Ozdemir, A. C., Buluş, K., & Zor, K. (2022c). Medium- to long-term nickel price forecasting using LSTM and GRU networks. Resources Policy, 78, 102906. https://doi.org/10.1016/j.resourpol.2022.102906
Rashid, H., Zafar, N., Iqbal, M. J., Dawood, H., & Dawood, H. (2019). Single Image Dehazing using CNN. Procedia Computer Science, 147, 124–130. https://doi.org/10.1016/j.procs.2019.01.201
Saud, A. S., & Shakya, S. (2019). Analysis of Gradient Descent Optimization Techniques with Gated Recurrent Unit for Stock Price Prediction: A Case Study on Banking Sector of Nepal Stock Exchange. Journal of Institute of Science and Technology, 24(2), 17–21. https://doi.org/10.3126/jist.v24i2.27247
Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions. Procedia Computer Science, 131, 895–903. https://doi.org/10.1016/j.procs.2018.04.298
Tang, J., Liu, C., Yang, D., & Ding, M. (2024). Prediction of ionospheric TEC using a GRU mechanism method. Advances in Space Research, 74(1), 260–270. https://doi.org/10.1016/j.asr.2024.03.050
Tuo, Q., Zhao, H., & Hu, Q. (2019). Hierarchical feature selection with subtree based graph regularization. Knowledge-Based Systems, 163, 996–1008. https://doi.org/10.1016/j.knosys.2018.10.023
van Steenbergen, R. M., & Mes, M. R. K. (2020). Forecasting demand profiles of new products. Decision Support Systems, 139, 113401. https://doi.org/10.1016/j.dss.2020.113401
Wang, M., & Ying, F. (2023). Point and interval prediction for significant wave height based on LSTM-GRU and KDE. Ocean Engineering, 289, 116247. https://doi.org/10.1016/j.oceaneng.2023.116247
Waqas, M., & Humphries, U. W. (2024). A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX, 13, 102946. https://doi.org/10.1016/j.mex.2024.102946
Yang, J., Zhao, C., Yu, H., & Chen, H. (2020). Use GBDT to Predict the Stock Market. Procedia Computer Science, 174, 161–171. https://doi.org/10.1016/j.procs.2020.06.071
Yao, Z., Wang, Z., Wang, D., Wu, J., & Chen, L. (2023). An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input. Journal of Hydrology, 625, 129977. https://doi.org/10.1016/j.jhydrol.2023.129977
Yu, J., de Antonio, A., & Villalba-Mora, E. (2022). Deep Learning (CNN, RNN) Applications for Smart Homes: A Systematic Review. Computers, 11(2), 26. https://doi.org/10.3390/computers11020026
Zarzycki, K., & Ławryńczuk, M. (2022). Advanced predictive control for GRU and LSTM networks. Information Sciences, 616, 229–254. https://doi.org/10.1016/j.ins.2022.10.078
Zeng, M., Cao, H., Chen, M., & Li, Y. (2019). User behaviour modeling, recommendations, and purchase prediction during shopping festivals. Electronic Markets, 29(2), 263–274. https://doi.org/10.1007/s12525-018-0311-8
Zhao, L., Li, Z., Qu, L., Zhang, J., & Teng, B. (2023). A hybrid VMD-LSTM/GRU model to predict non-stationary and irregular waves on the east coast of China. Ocean Engineering, 276, 114136. https://doi.org/10.1016/j.oceaneng.2023.114136
Zor, K., & Bulus, K. (2021). A benchmark of GRU and LSTM networks for short-term electric load forecasting. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 598–602. https://doi.org/10.1109/3ICT53449.2021.9581373
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Darmawan Lahru Riatma, Yusuf Fadhlilla Rahman, Trisna Ari Roshinta, Masbahah Masbahah, Ahmad Faisal Sani, Rifa Khoirunisa, Nur Azizul Haqimi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









