Prediksi Penduduk Miskin di Daerah Tertinggal Indonesia dengan Algoritma Prophet
Keywords:
Underdeveloped regions, Forecasting, Poverty, Machine Learning, prophetAbstract
Poverty is one of the common problems faced by every country in the world, including Indonesia. Governments from various regions in Indonesia are striving to eradicate poverty, particularly in underdeveloped areas. According to the Central Bureau of Statistics (BPS), the poverty rate has increased from 18.87% in 2015 to 24.56% in 2022 in these underdeveloped areas, which consist of 62 regions. By predicting the number of poor people in these regions, the government hopes to take steps to combat poverty. This study employs the Prophet algorithm, which is then integrated into a machine learning model to predict the number of poor people in underdeveloped areas. The data used covers the years 2015 to 2022, and the aim of this research is to assess the accuracy and error rate using the Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) parameters. The prediction results indicate an increase in the number of impoverished individuals to 35% in the year 2024, and it is projected to continue rising to 35% in 2027, with an MSE parameter of 2% and an MAPE parameter of 1%.References
Alkharif, S., Lee, K., & Kim, H. (2018). Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources.
Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov.
Choy, Y. T., Hoo, M. H., & Khor, K. C. (2021, September 8). Price Prediction Using Time-Series Algorithms for Stocks Listed on Bursa Malaysia. 2021 2nd International Conference on Artificial Intelligence and Data Sciences, AiDAS 2021. https://doi.org/10.1109/AiDAS53897.2021.9574445
Dwi Bekti, R. (2012). PREDIKSI DAN INTERPOLASI MELALUI ORDINARY KRIGING: STUDI KASUS KEMISKINAN DI PROVINSI JAWA TIMUR. Jurnal Mat Stat, 12(2), 123–132.
Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (R. Roumeliotis & N. Tache, Eds.; 2nd ed.). O’REILLY.
Karim, A. (2020). Perbandingan Prediksi Kemiskinan di Indonesia Menggunakan Support Vector Machine (SVM) dengan Regresi Linear. Jurnal Sains Matematika Dan Statistika, 6(1).
Kuhn, M., & Johnson, K. (2018). Applied predictive modeling. Springer.
Mamase, S., Sinukun, R. S., Muchlis Rahim, J., Barat, P., Botupingge, K., & Bone Bolango, K. (2018). Prediksi Tingkat Kemiskinan Provinsi Gorontalo Menggunakan Metode Gabungan K-Means dan Generalized Regression Neural Network. Edisi Nopember, 8(2).
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MA: MIT Press.
Raharjo, B. (2021). Pembelajaran Mesin (Machine Learning) (M. Wibowo Caroline, Ed.; 1st ed.). Yayasan Prima Agus Teknik.
Rahimi, I., Gandomi, A. H., Asteris, P. G., & Chen, F. (2021). Analysis and prediction of covid-19 using sir, seiqr and machine learning models: Australia, italy and uk cases. Information (Switzerland), 12(3), 1–25. https://doi.org/10.3390/info12030109
Riady, S. R. (2023). Stock Price Prediction using Prophet Facebook Algorithm for BBCA and TLKM. International Journal of Advances in Data and Information Systems, 4(2). https://doi.org/10.25008/ijadis.v4i2.1258
Syaharuddin, Pujiana, E., Purnama Sari, I., Melia Mardika, V., & Putri, M. (2020). ANALISIS ALGORITMA BACK PROPAGATION DALAM PREDIKSI ANGKA KEMISKINAN DI INDONESIA. Pendekar : Jurnal Pendidikan Berkarakter, 3(1), 11–17. https://doi.org/10.31764
Wanto, A. (2018). PENERAPAN JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI JUMLAH KEMISKINAN PADA KABUPATEN/KOTA DI PROVINSI RIAU. Kumpulan JurnaL Ilmu Komputer (KLIK), 05(01), 61–74.
Wibawa, G. N. A., Yahya, I., Baharuddin, Rahman, G. A., & Agusrawati. (2022). ANALISIS REGRESI DATA PANEL PADA FAKTOR-FAKTOR YANG MEMPENGARUHI TINGKAT KEMISKINAN SULAWESI TENGGARA TAHUN 2017-2020. Jurnal Matematika, Komputasi Dan Statistika, 2(3), 1–9.
Ye, Z. (2019). Air Pollutants Prediction in Shenzhen Based on ARIMA and Prophet Method. E3S Web of Conferences, 136. https://doi.org/10.1051/e3sconf/20191360
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Budi Wijaya Rauf

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

